메뉴 건너뛰기




Volumn 24, Issue 1, 2009, Pages 163-173

Application of an unsupervised artificial neural network technique to multivariant surface water quality data

Author keywords

Clustering; k Means clustering algorithm; Kohonen self organising feature maps; Surface water quality; Variable dependencies

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLUSTER ANALYSIS; CONCENTRATION (COMPOSITION); PARTITIONING; SEASONAL VARIATION; SURFACE WATER; WATER POLLUTION; WATER QUALITY;

EID: 62349118194     PISSN: 09123814     EISSN: 14401703     Source Type: Journal    
DOI: 10.1007/s11284-008-0495-z     Document Type: Article
Times cited : (22)

References (23)
  • 1
    • 22544446792 scopus 로고    scopus 로고
    • New tool for evaluation of performance of wastewater treatment plant: Artificial neural network
    • Ö Çinar 2005 New tool for evaluation of performance of wastewater treatment plant: artificial neural network Process Biochem 40 2980 2984
    • (2005) Process Biochem , vol.40 , pp. 2980-2984
    • Çinar, Ö.1
  • 3
    • 0035673991 scopus 로고    scopus 로고
    • A comparison of self-organising map algorithm and some conventional statistical methods for ecological community ordination
    • JL Giraudel S Lek 2001 A comparison of self-organising map algorithm and some conventional statistical methods for ecological community ordination Ecol Model 146 329 339
    • (2001) Ecol Model , vol.146 , pp. 329-339
    • Giraudel, J.L.1    Lek, S.2
  • 4
    • 0042477618 scopus 로고    scopus 로고
    • Identification of land use with water quality data in stormwater using a neural network
    • H Ha MK Srenstrom 2003 Identification of land use with water quality data in stormwater using a neural network Water Res 37 4222 4230
    • (2003) Water Res , vol.37 , pp. 4222-4230
    • Ha, H.1    Srenstrom, M.K.2
  • 6
    • 0035166902 scopus 로고    scopus 로고
    • Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
    • YS Hong MR Rosen 2001 Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network Urban Water 3 193 204
    • (2001) Urban Water , vol.3 , pp. 193-204
    • Hong, Y.S.1    Rosen, M.R.2
  • 7
    • 0037399368 scopus 로고    scopus 로고
    • Analysis of municipal wastewater treatment plant using a neural network-based pattern analysis
    • YS Hong MR Rosen R Bhamidimarri 2003 Analysis of municipal wastewater treatment plant using a neural network-based pattern analysis Water Res 37 1608 1618
    • (2003) Water Res , vol.37 , pp. 1608-1618
    • Hong, Y.S.1    Rosen, M.R.2    Bhamidimarri, R.3
  • 8
    • 62349117652 scopus 로고
    • Prentice-Hall Englewood Cliffs
    • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs, pp 96-101
    • (1988) , pp. 96-101
    • Jain, A.K.1    Dubes, R.C.2
  • 9
    • 0019991550 scopus 로고
    • Analysis of a simple self-organising process
    • T Kohonen 1982 Analysis of a simple self-organising process Biol Cybern 44 135 140
    • (1982) Biol Cybern , vol.44 , pp. 135-140
    • Kohonen, T.1
  • 10
    • 0020068152 scopus 로고
    • Self-organised formation of topologically correct feature maps
    • T Kohonen 1982 Self-organised formation of topologically correct feature maps Biol Cybern 43 59 69
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 11
    • 0345404396 scopus 로고    scopus 로고
    • The self-organising map
    • T Kohonen 1998 The self-organising map Neurocomputing 21 1 6
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 12
    • 62349105845 scopus 로고    scopus 로고
    • 3rd edn Springer Berlin
    • Kohonen T (2001) Self-organising maps, 3rd edn. Springer, Berlin
    • (2001)
    • Kohonen, T.1
  • 13
    • 32644466855 scopus 로고    scopus 로고
    • Multivariate analysis and self-organising mapping applied to analysis of nest-site selection in Black-tailed Gulls
    • WS Lee YS Kwon JC Yoo MY Song TS Chon 2006 Multivariate analysis and self-organising mapping applied to analysis of nest-site selection in Black-tailed Gulls Ecol Model 193 602 614
    • (2006) Ecol Model , vol.193 , pp. 602-614
    • Lee, W.S.1    Kwon, Y.S.2    Yoo, J.C.3    Song, M.Y.4    Chon, T.S.5
  • 14
    • 0032842742 scopus 로고    scopus 로고
    • Predicting stream nitrogen concentration from watershed features using neural networks
    • S Lek M Guiresse JL Giraudel 1999 Predicting stream nitrogen concentration from watershed features using neural networks Water Res 33 3469 3478
    • (1999) Water Res , vol.33 , pp. 3469-3478
    • Lek, S.1    Guiresse, M.2    Giraudel, J.L.3
  • 15
    • 33646564705 scopus 로고    scopus 로고
    • Identification of homogeneous regions for regional frequency analysis using the self-organising map
    • GF Lin LH Chen 2006 Identification of homogeneous regions for regional frequency analysis using the self-organising map J Hydrol 324 1 9
    • (2006) J Hydrol , vol.324 , pp. 1-9
    • Lin, G.F.1    Chen, L.H.2
  • 16
    • 2942560879 scopus 로고    scopus 로고
    • Self-organising map and clustering for wastewater treatment monitoring
    • H López I Machón 2004 Self-organising map and clustering for wastewater treatment monitoring Eng Appl Artif Intell 17 3 215 225
    • (2004) Eng Appl Artif Intell , vol.17 , Issue.3 , pp. 215-225
    • López, H.1    MacHón, I.2
  • 17
    • 29144432300 scopus 로고    scopus 로고
    • End-point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms
    • I Machón H López 2006 End-point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms Eng Appl Artif Intell 19 19 28
    • (2006) Eng Appl Artif Intell , vol.19 , pp. 19-28
    • MacHón, I.1    López, H.2
  • 18
    • 0242500410 scopus 로고    scopus 로고
    • Patterning and predicting aquatic macroinvertabrate diversities using artificial neural network
    • YS Park PFM Verdonschot TS Chon S Lek 2003 Patterning and predicting aquatic macroinvertabrate diversities using artificial neural network Water Res 37 1749 1758
    • (2003) Water Res , vol.37 , pp. 1749-1758
    • Park, Y.S.1    Verdonschot, P.F.M.2    Chon, T.S.3    Lek, S.4
  • 19
    • 2542545752 scopus 로고    scopus 로고
    • Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks
    • YS Park TS Chon IS Kwak S Lek 2004 Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks Sci Total Environ 327 105 122
    • (2004) Sci Total Environ , vol.327 , pp. 105-122
    • Park, Y.S.1    Chon, T.S.2    Kwak, I.S.3    Lek, S.4
  • 20
    • 0003425384 scopus 로고    scopus 로고
    • American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC
    • Standard Methods for the Examination of Water and Wastewater, 20th edn (1998) American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC
    • (1998) Standard Methods for the Examination of Water and Wastewater, 20th Edn
  • 21
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • K Thirumalaiah MC Deo 2000 Hydrological forecasting using neural networks J Hydrol Eng 5 180 189
    • (2000) J Hydrol Eng , vol.5 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 22
    • 33750717301 scopus 로고    scopus 로고
    • A feature selection methods based on concept extraction and SOM text clustering analysis
    • L Wang M Jiang S Liao Y Lu 2006 A feature selection methods based on concept extraction and SOM text clustering analysis Int J Comput Sci Network Security 6 20 28
    • (2006) Int J Comput Sci Network Security , vol.6 , pp. 20-28
    • Wang, L.1    Jiang, M.2    Liao, S.3    Lu, Y.4
  • 23
    • 0035672573 scopus 로고    scopus 로고
    • Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes
    • H Wilson F Recknagel 2001 Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes Ecol Model 146 69 84
    • (2001) Ecol Model , vol.146 , pp. 69-84
    • Wilson, H.1    Recknagel, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.