메뉴 건너뛰기




Volumn 13, Issue 1, 2009, Pages 33-44

Visualization of high-dimensional clinically acquired geographic data using the self-organizing maps

Author keywords

Clustering; Data exploration; Disease; Geocomputations; GIS; Pattern recognition; Self organizing maps; Visualization

Indexed keywords

ALGORITHM; CLUSTER ANALYSIS; DATA SET; DISEASE; ENVIRONMENTAL FACTOR; GIS; PATTERN RECOGNITION; SPATIAL DISTRIBUTION; VISUALIZATION;

EID: 62249142073     PISSN: 17262135     EISSN: 16848799     Source Type: Journal    
DOI: 10.3808/jei.200900138     Document Type: Article
Times cited : (5)

References (45)
  • 2
    • 35048902358 scopus 로고    scopus 로고
    • Geo-self-organizing map (Geo-SOM) for building and Exploring Homogenous Regions
    • Egenhofer, M.J, Freksa, C, and Miller, H.J, eds, Geographical Information Science, Springer-Verlag, Berlin Heidelberg, pp
    • Bação, F., Lobo, V., and Painho, M. (2004). Geo-self-organizing map (Geo-SOM) for building and Exploring Homogenous Regions, In:Egenhofer, M.J., Freksa, C., and Miller, H.J. (eds.) Lecture Notes in Computer Science 3234, Geographical Information Science, Springer-Verlag, Berlin Heidelberg, pp. 22-37.
    • (2004) Lecture Notes in Computer Science , vol.3234 , pp. 22-37
    • Bação, F.1    Lobo, V.2    Painho, M.3
  • 3
    • 12344271105 scopus 로고    scopus 로고
    • The self-organizing map, the Geo-SOM, and relevant variants for geosciences
    • doi:10.1016/j.cageo.2004.06.013
    • Bação, F., Lobo, V., and Painho, M. (2005). The self-organizing map, the Geo-SOM, and relevant variants for geosciences, Computers and Geosciences, 31, 155-163, doi:10.1016/j.cageo.2004.06.013.
    • (2005) Computers and Geosciences , vol.31 , pp. 155-163
    • Bação, F.1    Lobo, V.2    Painho, M.3
  • 4
    • 2442453369 scopus 로고    scopus 로고
    • A new approach for exploring multivariate data: Self-organizing maps
    • Bock, T. (2004). A new approach for exploring multivariate data: self-organizing maps, International Journal of Market Research, 46(2), 189-203.
    • (2004) International Journal of Market Research , vol.46 , Issue.2 , pp. 189-203
    • Bock, T.1
  • 9
    • 62249163930 scopus 로고    scopus 로고
    • Ding, C.H. (2002). A probabilistic model for dimensionality reducetion in information retrieval and filtering, In Proceedings of the second IEE International Conference on Data Mining, December 2002, pp. 147-154.
    • Ding, C.H. (2002). A probabilistic model for dimensionality reducetion in information retrieval and filtering, In Proceedings of the second IEE International Conference on Data Mining, December 2002, pp. 147-154.
  • 11
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer, A. (2001). On the use of self-organizing maps for clustering and visualization, Intelligent data analysis, 5, 373-384.
    • (2001) Intelligent data analysis , vol.5 , pp. 373-384
    • Flexer, A.1
  • 13
    • 19944422137 scopus 로고    scopus 로고
    • Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach
    • doi:10.1559/1523040053722150
    • Guo, D., Gahegan, M., MacEachren, A., and Zhou, B. (2005). Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach, Cartography and Geographic Information Science, 32(2), 113-132, doi:10.1559/1523040053722150.
    • (2005) Cartography and Geographic Information Science , vol.32 , Issue.2 , pp. 113-132
    • Guo, D.1    Gahegan, M.2    MacEachren, A.3    Zhou, B.4
  • 14
    • 0141794290 scopus 로고    scopus 로고
    • ICEAGE: Interactive clustering and exploration of large and high-dimensional Geodata
    • Guo, D., Peuquet, D., and Gahegan, M. (2003). ICEAGE: Interactive clustering and exploration of large and high-dimensional Geodata, GeoInformatica, 7(3), 229-253.
    • (2003) GeoInformatica , vol.7 , Issue.3 , pp. 229-253
    • Guo, D.1    Peuquet, D.2    Gahegan, M.3
  • 15
    • 0004185151 scopus 로고
    • John Wiley and Sons, New York, pp
    • Hartigan, J. (1975). Clustering Algorithms. John Wiley and Sons, New York, pp. 351.
    • (1975) Clustering Algorithms , pp. 351
    • Hartigan, J.1
  • 17
    • 0004161991 scopus 로고
    • Algorithms for Clustering Data
    • Prentice-Hall Inc, Upper Saddle River, New Jersey, pp
    • Jain, A.K., and Dubes, R.C. (1988). Algorithms for Clustering Data, Prentice-Hall Advanced Reference Series. Prentice-Hall Inc, Upper Saddle River, New Jersey, pp. 334.
    • (1988) Prentice-Hall Advanced Reference Series , pp. 334
    • Jain, A.K.1    Dubes, R.C.2
  • 18
    • 2442717402 scopus 로고    scopus 로고
    • Selection of streets from a network using self-organizing maps
    • doi:10.1111/j.1467-9671.2004.00186.x
    • Jiang, B., and Harrie, L. (2004). Selection of streets from a network using self-organizing maps, Transactions in GIS, 8(3), 335-350, doi:10.1111/j.1467-9671.2004.00186.x.
    • (2004) Transactions in GIS , vol.8 , Issue.3 , pp. 335-350
    • Jiang, B.1    Harrie, L.2
  • 19
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • doi:10.1007/BF00337288
    • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps, Biological Cybernetics, 43, 59-69, doi:10.1007/BF00337288.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 21
    • 0003410791 scopus 로고    scopus 로고
    • 3rd edition, Springer press, Berlin, Heideberg, pp
    • Kohonen, T. (2001). Self-Organizing Maps, 3rd edition, Springer press, Berlin, Heideberg, pp. 501.
    • (2001) Self-Organizing Maps , pp. 501
    • Kohonen, T.1
  • 22
    • 3042583132 scopus 로고    scopus 로고
    • Geovisualization to support the exploration of large health and demographic survey data
    • doi:10.1186/1476-072X-3-12
    • Koua, E.L., and Kraak, M.J. (2004). Geovisualization to support the exploration of large health and demographic survey data, Int. J. Health Geogr., 3, 12, doi:10.1186/1476-072X-3-12.
    • (2004) Int. J. Health Geogr , vol.3 , pp. 12
    • Koua, E.L.1    Kraak, M.J.2
  • 25
    • 0031725991 scopus 로고    scopus 로고
    • Cluster discovery techniques for exploratory spatial data analysis
    • Murray, A.L., and Estivill-Castro, V. (1998). Cluster discovery techniques for exploratory spatial data analysis, Int. J. Geogr. Inf. Sci., 12(5), 431-443.
    • (1998) Int. J. Geogr. Inf. Sci , vol.12 , Issue.5 , pp. 431-443
    • Murray, A.L.1    Estivill-Castro, V.2
  • 26
    • 84943623307 scopus 로고    scopus 로고
    • Naenna, T., Bress, R.A., and Embrechts, M.J. (2003). DNA classifications with self-organizing maps, In Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications (SMCIA 2003), 23(25), 151-154.
    • Naenna, T., Bress, R.A., and Embrechts, M.J. (2003). DNA classifications with self-organizing maps, In Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications (SMCIA 2003), 23(25), 151-154.
  • 27
    • 0036079737 scopus 로고    scopus 로고
    • Nurnberger, A., and Detyniecki, M. (2002). Visualizing changes in data collections using growing self-organizing maps, In Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN 2002), 2, 1912-1917.
    • Nurnberger, A., and Detyniecki, M. (2002). Visualizing changes in data collections using growing self-organizing maps, In Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN 2002), 2, 1912-1917.
  • 28
    • 0029510298 scopus 로고
    • Using Neurocomputing Methods to Classify Britain's Residential Areas
    • P. Fisher ed, Taylor and Francis
    • Openshaw, S., Blake, M., and Wymer, C. (1995). Using Neurocomputing Methods to Classify Britain's Residential Areas, In P. Fisher (ed.) Innovations in GIS, Taylor and Francis, 2, 97-111.
    • (1995) Innovations in GIS , vol.2 , pp. 97-111
    • Openshaw, S.1    Blake, M.2    Wymer, C.3
  • 30
    • 62249206909 scopus 로고    scopus 로고
    • Openshaw, S. (1998). Building automated Geographical Analysis and Exploration Machines, In: Geocomputation: A primer ,Longley, P. A., Brooks, S. M. and Mcdonnell, B. (eds.), Chichester, Macmillan Wiley, pp. 95-115.
    • Openshaw, S. (1998). Building automated Geographical Analysis and Exploration Machines, In: Geocomputation: A primer ,Longley, P. A., Brooks, S. M. and Mcdonnell, B. (eds.), Chichester, Macmillan Wiley, pp. 95-115.
  • 31
    • 62249195908 scopus 로고    scopus 로고
    • th-8th April 2005.
    • th-8th April 2005.
  • 32
    • 62249102543 scopus 로고    scopus 로고
    • st-3rd August 2005, Ann Arbor, University of Michigan.
    • st-3rd August 2005, Ann Arbor, University of Michigan.
  • 33
    • 1942487825 scopus 로고    scopus 로고
    • Spatial relationships among asthma prevalence, healthcare utilization, and pollution sources in Buffalo neighborhoods, New York State
    • Oyana, T.J., and Lwebuga-Mukasa, J.S. (2004). Spatial relationships among asthma prevalence, healthcare utilization, and pollution sources in Buffalo neighborhoods, New York State, J. Environ. Health, 66(8), 25-38.
    • (2004) J. Environ. Health , vol.66 , Issue.8 , pp. 25-38
    • Oyana, T.J.1    Lwebuga-Mukasa, J.S.2
  • 34
    • 3042774169 scopus 로고    scopus 로고
    • Geographic clustering of adult asthma hospitalization and residential exposure to pollution sites in Buffalo neighborhoods at a U.S.Canada Border Crossing Point
    • Oyana, T.J., Rogerson, P., and Lwebuga-Mukasa, J.S. (2004). Geographic clustering of adult asthma hospitalization and residential exposure to pollution sites in Buffalo neighborhoods at a U.S.Canada Border Crossing Point, Am. J. Public Health, 94(7), 1250-1257.
    • (2004) Am. J. Public Health , vol.94 , Issue.7 , pp. 1250-1257
    • Oyana, T.J.1    Rogerson, P.2    Lwebuga-Mukasa, J.S.3
  • 35
    • 25444528301 scopus 로고    scopus 로고
    • Geographic variations of childhood asthma hospitalization and outpatient visits and proximity to ambient pollution sources at a U.S.-Canada border crossing
    • doi:10.1186/1476-072X-4-14
    • Oyana, T.J., and Rivers, P.A. (2005). Geographic variations of childhood asthma hospitalization and outpatient visits and proximity to ambient pollution sources at a U.S.-Canada border crossing, International Journal of Health Geographies, 4(1), 14, doi:10.1186/1476-072X-4-14.
    • (2005) International Journal of Health Geographies , vol.4 , Issue.1 , pp. 14
    • Oyana, T.J.1    Rivers, P.A.2
  • 39
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon, J.W. (1969). A nonlinear mapping for data structure analysis, IEEE Transactions on Computing, 18, 401-409.
    • (1969) IEEE Transactions on Computing , vol.18 , pp. 401-409
    • Sammon, J.W.1
  • 40
    • 0043204296 scopus 로고    scopus 로고
    • Spatialization Methods: A Cartographic Research Agenda for Non-Geographic Information Visualization
    • doi:10.1559/152304003100011081
    • Skupin, A., and Fabrikant, S. (2003). Spatialization Methods: A Cartographic Research Agenda for Non-Geographic Information Visualization, Cartography and Geographic Information Science, 30(2), 99-110, doi:10.1559/152304003100011081.
    • (2003) Cartography and Geographic Information Science , vol.30 , Issue.2 , pp. 99-110
    • Skupin, A.1    Fabrikant, S.2
  • 41
    • 0036079708 scopus 로고    scopus 로고
    • Sugiyama, A., and Kotani, M. (2002). Analysis of gene expression data by using self-organizing maps and k-means clustering, In Pro- ceedings of the 2002 International Joint Conference on Neural Networks, 12-17 May 2002, 2, 1342-1345.
    • Sugiyama, A., and Kotani, M. (2002). Analysis of gene expression data by using self-organizing maps and k-means clustering, In Pro- ceedings of the 2002 International Joint Conference on Neural Networks, 12-17 May 2002, 2, 1342-1345.
  • 43
    • 0004172718 scopus 로고    scopus 로고
    • Second Edition, Academic Press, San Diego, California; London, pp
    • Theodoridis, S., and Koutroumbas, K. (2003). Pattern Recognition, Second Edition, Academic Press, San Diego, California; London, pp. 689.
    • (2003) Pattern Recognition , pp. 689
    • Theodoridis, S.1    Koutroumbas, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.