메뉴 건너뛰기




Volumn 30, Issue 1, 2009, Pages 87-94

Artificial neural networks in wood identification: The case of two Juniperus species from the Canary Islands

Author keywords

ANN; Artificial neural network; Biometry; J. phoenicea var. canariensis; Juniperus cedrus

Indexed keywords

CEDRUS; CONIFEROPHYTA; JUNIPERUS; JUNIPERUS CEDRUS; JUNIPERUS PHOENICEA;

EID: 61849184780     PISSN: 09281541     EISSN: None     Source Type: Journal    
DOI: 10.1163/22941932-90000206     Document Type: Article
Times cited : (29)

References (29)
  • 1
    • 27844488031 scopus 로고    scopus 로고
    • Predicting wood thermal conductivity using artificial neural networks
    • Avramidis, S. & L. Iliadis. 2005a. Predicting wood thermal conductivity using artificial neural networks. Wood Fiber Sci. 37: 682-690.
    • (2005) Wood Fiber Sci , vol.37 , pp. 682-690
    • Avramidis, S.1    Iliadis, L.2
  • 2
    • 21844453935 scopus 로고    scopus 로고
    • Wood-water sorption isotherm prediction with artificial neural networks: A preliminary study
    • Avramidis, S. & L. Iliadis. 2005b. Wood-water sorption isotherm prediction with artificial neural networks: A preliminary study. Holzforschung 59: 336-341.
    • (2005) Holzforschung , vol.59 , pp. 336-341
    • Avramidis, S.1    Iliadis, L.2
  • 5
    • 0344430180 scopus 로고    scopus 로고
    • Artificial neural networks for species identification by taxonomists
    • Clark, J.Y. 2003. Artificial neural networks for species identification by taxonomists. Biosystems 72: 131-147.
    • (2003) Biosystems , vol.72 , pp. 131-147
    • Clark, J.Y.1
  • 6
    • 0031122208 scopus 로고    scopus 로고
    • Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network
    • Cook, D.F. & C.C. Chiu. 1997. Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network. Eng. Appl. Artif. Intell. 10: 171-177.
    • (1997) Eng. Appl. Artif. Intell , vol.10 , pp. 171-177
    • Cook, D.F.1    Chiu, C.C.2
  • 7
    • 0033726694 scopus 로고    scopus 로고
    • Combining a neural network with a genetic algorithm for process parameter optimization
    • Cook, D.F., C.T. Ragsdale & R.L. Major. 2000. Combining a neural network with a genetic algorithm for process parameter optimization. Eng. Appl. Artif. Intell. 13: 319-396.
    • (2000) Eng. Appl. Artif. Intell , vol.13 , pp. 319-396
    • Cook, D.F.1    Ragsdale, C.T.2    Major, R.L.3
  • 9
    • 22544487549 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative tool in pine bark volume estimation
    • Diamantopoulou, M.J. 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Comput. Electron. Agric. 48: 235-244.
    • (2005) Comput. Electron. Agric , vol.48 , pp. 235-244
    • Diamantopoulou, M.J.1
  • 10
    • 0031649938 scopus 로고    scopus 로고
    • A decision tree of neural networks for classifying images of wood veneer
    • Drake, P. R. & M.S. Packianather. 1998. A decision tree of neural networks for classifying images of wood veneer. Int. J. Adv. Manuf. Technol. 14: 280-285.
    • (1998) Int. J. Adv. Manuf. Technol , vol.14 , pp. 280-285
    • Drake, P.R.1    Packianather, M.S.2
  • 11
    • 0344074641 scopus 로고    scopus 로고
    • Conifer species recognition: An exploratory analysis of in situ hyperspectral data
    • Gong, P., R. Pu & B. Yu. 1997. Conifer species recognition: An exploratory analysis of in situ hyperspectral data. Remote Sens. Environ. 62: 189-200.
    • (1997) Remote Sens. Environ , vol.62 , pp. 189-200
    • Gong, P.1    Pu, R.2    Yu, B.3
  • 13
  • 16
    • 85036804725 scopus 로고    scopus 로고
    • Isasi, P. & I.M. Galván. 2004. Redes Neuronales Artificiales, un enfoque práctico. Pearson Educación S.A., Madrid.
    • Isasi, P. & I.M. Galván. 2004. Redes Neuronales Artificiales, un enfoque práctico. Pearson Educación S.A., Madrid.
  • 17
    • 0031995081 scopus 로고    scopus 로고
    • Classification of wood species by neural network analysis of ultrasonic signals
    • Jordan, R., F. Feeney, N. Nesbitt & J. A. Evertsen. 1998. Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonics 36: 219-222.
    • (1998) Ultrasonics , vol.36 , pp. 219-222
    • Jordan, R.1    Feeney, F.2    Nesbitt, N.3    Evertsen, J.A.4
  • 18
    • 3342897624 scopus 로고    scopus 로고
    • Discrimination of sunflower, weed and soil by artificial neural networks
    • Kavdir, İ. 2004. Discrimination of sunflower, weed and soil by artificial neural networks. Comput. Electron. Agric. 44: 153-160.
    • (2004) Comput. Electron. Agric , vol.44 , pp. 153-160
    • Kavdir, I.1
  • 19
    • 0006508609 scopus 로고
    • A new method of measuring tracheid length
    • Ladell, J.T. 1959. A new method of measuring tracheid length. Forestry 32: 124-125.
    • (1959) Forestry , vol.32 , pp. 124-125
    • Ladell, J.T.1
  • 20
    • 1942504268 scopus 로고    scopus 로고
    • On the use of counterpropagation artificial neural networks to characterize Italian rice varieties
    • Marini, F., J. Zupan & A. Magri. 2004. On the use of counterpropagation artificial neural networks to characterize Italian rice varieties. Anal. Chim. Acta 510: 231-240.
    • (2004) Anal. Chim. Acta , vol.510 , pp. 231-240
    • Marini, F.1    Zupan, J.2    Magri, A.3
  • 22
    • 0035169271 scopus 로고    scopus 로고
    • Unification of fruit water sorption isotherm using artificial neural networks
    • Myhara, R.M. & S. Sablani. 2001. Unification of fruit water sorption isotherm using artificial neural networks. Dry. Technol. 19(8): 1543-1554.
    • (2001) Dry. Technol , vol.19 , Issue.8 , pp. 1543-1554
    • Myhara, R.M.1    Sablani, S.2
  • 23
    • 0036179434 scopus 로고    scopus 로고
    • Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks
    • Nordmark, U. 2002. Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks. Scand. J. Forest Res. 17: 72-78.
    • (2002) Scand. J. Forest Res , vol.17 , pp. 72-78
    • Nordmark, U.1
  • 24
    • 0036476658 scopus 로고    scopus 로고
    • Desorption isotherm modeling of black tea using artificial neural networks
    • Panchariya, P.C, D. Popovic & A.L. Sharma. 2002. Desorption isotherm modeling of black tea using artificial neural networks. Dry. Technol. 20(2): 351-362.
    • (2002) Dry. Technol , vol.20 , Issue.2 , pp. 351-362
    • Panchariya, P.C.1    Popovic, D.2    Sharma, A.L.3
  • 25
    • 33845321891 scopus 로고    scopus 로고
    • Modeling of water sorption isotherm for corn starch
    • Peng, G., X. Chen, W. Wu & X. Jiang. 2007. Modeling of water sorption isotherm for corn starch. J. Food Eng. 80: 562-567.
    • (2007) J. Food Eng , vol.80 , pp. 562-567
    • Peng, G.1    Chen, X.2    Wu, W.3    Jiang, X.4
  • 27
    • 85036847604 scopus 로고    scopus 로고
    • Pérez, M.L. & Q. Martín. 2003. Aplicaciones de las redes neuronales a la estadística. Cuadernos de Estadística. La Muralla S.A., Madrid.
    • Pérez, M.L. & Q. Martín. 2003. Aplicaciones de las redes neuronales a la estadística. Cuadernos de Estadística. La Muralla S.A., Madrid.
  • 28
    • 61849098565 scopus 로고    scopus 로고
    • Clasificación de defectos en madera utilizando redes neuronales artificiales.
    • Ramírez G. & M.I. Chacón. 2005. Clasificación de defectos en madera utilizando redes neuronales artificiales. Computación y Sistemas. 9: 17-27.
    • (2005) Computación y Sistemas , vol.9 , pp. 17-27
    • Ramírez, G.1    Chacón, M.I.2
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.