-
2
-
-
0000495631
-
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type
-
English transl. in:
-
Bautin N.N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat. Sb. 30 (1952) 181-196 English transl. in:
-
(1952)
Mat. Sb.
, vol.30
, pp. 181-196
-
-
Bautin, N.N.1
-
3
-
-
0000465791
-
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type
-
Bautin N.N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Math. USSR Sb. 100 (1954) 397-413
-
(1954)
Math. USSR Sb.
, vol.100
, pp. 397-413
-
-
Bautin, N.N.1
-
5
-
-
0030546995
-
Successive derivatives of a first return map, application to the study of quadratic vector fields
-
Françoise J.P. Successive derivatives of a first return map, application to the study of quadratic vector fields. Ergodic Theory Dynam. Systems 16 (1996) 87-96
-
(1996)
Ergodic Theory Dynam. Systems
, vol.16
, pp. 87-96
-
-
Françoise, J.P.1
-
6
-
-
0018530408
-
Lyapunov approach to multiple Hopf bifurcation
-
Gobber F., and Willamowskii K.D. Lyapunov approach to multiple Hopf bifurcation. J. Math. Anal. Appl. 71 (1979) 333-350
-
(1979)
J. Math. Anal. Appl.
, vol.71
, pp. 333-350
-
-
Gobber, F.1
Willamowskii, K.D.2
-
8
-
-
41149174316
-
A quartic system and a quintic system with fine focus of order 18
-
Huang J., Wang F., Wang L., and Yang J. A quartic system and a quintic system with fine focus of order 18. Bull. Sci. Math. 132 3 (2008) 205-217
-
(2008)
Bull. Sci. Math.
, vol.132
, Issue.3
, pp. 205-217
-
-
Huang, J.1
Wang, F.2
Wang, L.3
Yang, J.4
-
9
-
-
0037246396
-
Hilbert's 16th problem and bifurcations of planar polynomial vector fields
-
Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Inernat. J. Bifur. Chaos 13 (2003) 47-106
-
(2003)
Inernat. J. Bifur. Chaos
, vol.13
, pp. 47-106
-
-
Li, J.1
-
10
-
-
70350376754
-
-
J. Llibre, Integrability of polynomial differential systems, in: Handbook of Differential Equations (Ordinary Differential Equations, 1), Elsevier, North-Holland, 2004, pp. 437-532
-
J. Llibre, Integrability of polynomial differential systems, in: Handbook of Differential Equations (Ordinary Differential Equations, vol. 1), Elsevier, North-Holland, 2004, pp. 437-532
-
-
-
-
11
-
-
0001304970
-
Algebraic and geometric aspects of the theory of polynomial vector fields
-
Bifurcations and Periodic Orbits of Vector Fields. Schlomiuk D. (Ed), Kluwer Academic, London
-
Schlomiuk D. Algebraic and geometric aspects of the theory of polynomial vector fields. In: Schlomiuk D. (Ed). Bifurcations and Periodic Orbits of Vector Fields. NATO ASI Ser. C vol. 408 (1993), Kluwer Academic, London 429-467
-
(1993)
NATO ASI Ser. C
, vol.408
, pp. 429-467
-
-
Schlomiuk, D.1
-
12
-
-
0002754080
-
The number of limit cycles in the neighborhood of a singular point
-
Sibirskii K.S. The number of limit cycles in the neighborhood of a singular point. Differential Equations 1 (1965) 36-47
-
(1965)
Differential Equations
, vol.1
, pp. 36-47
-
-
Sibirskii, K.S.1
-
13
-
-
0000113158
-
Eleven small limit cycles in a cubic vector field
-
Zoladek H. Eleven small limit cycles in a cubic vector field. Nonlinearity 8 (1995) 843-860
-
(1995)
Nonlinearity
, vol.8
, pp. 843-860
-
-
Zoladek, H.1
|