-
2
-
-
36749065072
-
Selection of biologically relevant genes with a wrapper stochastic algorithm
-
K. Le Cao, O. Goncalves, P. Besse, and S. Gadat. Selection of biologically relevant genes with a wrapper stochastic algorithm. Statistical Applications in Genetics and Molecular Biology, 6(29), 2007.
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, vol.6
, Issue.29
-
-
Le Cao, K.1
Goncalves, O.2
Besse, P.3
Gadat, S.4
-
3
-
-
61849084313
-
-
C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~c j lin/libsvm.
-
C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~c j lin/libsvm.
-
-
-
-
4
-
-
37549036292
-
Monte carlo feature selection for supervised classification
-
M. Draminski, A. Rada-Iglesias, S. Enroth, C. Wadelius, J. Koronacki, and J. Komorowski. Monte carlo feature selection for supervised classification. Bioinformatics, 24(1): 110-117, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.1
, pp. 110-117
-
-
Draminski, M.1
Rada-Iglesias, A.2
Enroth, S.3
Wadelius, C.4
Koronacki, J.5
Komorowski, J.6
-
5
-
-
22944485061
-
Semisupervised learning for molecular profiling
-
C. Furlanello, M. Serafini, S. Merler, and G. Jurman. Semisupervised learning for molecular profiling. IEEE/ACM Trans. on Comp. Biology and Bioinformatics, 2(2): 110-118, 2005.
-
(2005)
IEEE/ACM Trans. on Comp. Biology and Bioinformatics
, vol.2
, Issue.2
, pp. 110-118
-
-
Furlanello, C.1
Serafini, M.2
Merler, S.3
Jurman, G.4
-
6
-
-
0242410408
-
Benchmarking attribute selection techniques for discrete class data mining
-
December
-
M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transaction on Knowledge and Data Engineering, 15(6), December 2003.
-
(2003)
IEEE Transaction on Knowledge and Data Engineering
, vol.15
, Issue.6
-
-
Hall, M.A.1
Holmes, G.2
-
7
-
-
33747344944
-
Comparison and evaluation of methods for generating differentially expressed gene lists from microarray
-
July
-
I. Jeffery, D. Higgins, and A. Culhane. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray. BMC Bioinformatics, 7(1):359, July 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 359
-
-
Jeffery, I.1
Higgins, D.2
Culhane, A.3
-
8
-
-
0000984930
-
How many genes are needed for a discriminant microarray data analysis?
-
W. Li and Y. Yang. How many genes are needed for a discriminant microarray data analysis? Methods of Microarray Data Analysis, pages 137-150, 2002.
-
(2002)
Methods of Microarray Data Analysis
, pp. 137-150
-
-
Li, W.1
Yang, Y.2
-
9
-
-
13444249852
-
Prediction of cancer outcome with microarrays: A multiple random validation strategy
-
S. Michielis, S. Koscielny, and C. Hill. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet, 365:488-492, 2005.
-
(2005)
Lancet
, vol.365
, pp. 488-492
-
-
Michielis, S.1
Koscielny, S.2
Hill, C.3
-
11
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8): 1226-1238, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
12
-
-
61849132999
-
The symphony callable library for mixed integer programming
-
Software available at
-
T. K. Ralphs and M. Gzelsoy. The symphony callable library for mixed integer programming. The Next Wave in Computing, Optimization, and Decision Technologies, 29:61-76, 2006. Software available at http://http://www.coin- or.org/SYMPHONY.
-
(2006)
The Next Wave in Computing, Optimization, and Decision Technologies
, vol.29
, pp. 61-76
-
-
Ralphs, T.K.1
Gzelsoy, M.2
-
13
-
-
18244409933
-
Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
-
81, Jan
-
M. Shipp and al. Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 8(1):68, 74, Jan. 2002.
-
(2002)
Nature Medicine
, vol.68
, pp. 74
-
-
Shipp, M.1
and al2
-
14
-
-
15844413351
-
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
-
A. Statnikov, C. F Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. BMC Bioinformatics, 21(5):631-643, 2005.
-
(2005)
BMC Bioinformatics
, vol.21
, Issue.5
, pp. 631-643
-
-
Statnikov, A.1
Aliferis, C.F.2
Tsamardinos, I.3
Hardin, D.4
Levy, S.5
-
15
-
-
0042388208
-
Rankgene: Identification of diagnostic genes based on expression data
-
Aug
-
Y Su, T.M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif. Rankgene: identification of diagnostic genes based on expression data. Bioinformatics, 19:1578-1579, Aug 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 1578-1579
-
-
Su, Y.1
Murali, T.M.2
Pavlovic, V.3
Schaffer, M.4
Kasif, S.5
-
16
-
-
34247622378
-
Iterative relief for feature weighting: Algorithms, theories, and applications
-
Y Sun. Iterative relief for feature weighting: Algorithms, theories, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1035-1051, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.6
, pp. 1035-1051
-
-
Sun, Y.1
|