-
1
-
-
33746238119
-
-
Jun, Y.; Choi, J.; Uieon, J. Angew. Chem. Int. Ed. 2006, 45, 3414-3439.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 3414-3439
-
-
Jun, Y.1
Choi, J.2
Uieon, J.3
-
3
-
-
31544452793
-
-
Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl. Phys. 2005, 44,8269-8285.
-
(2005)
Jpn. J. Appl. Phys
, vol.44
, pp. 8269-8285
-
-
Hashimoto, K.1
Irie, H.2
Fujishima, A.3
-
6
-
-
0033237862
-
-
Christensen, P. A.; Eameaim, J.; Hamnett, A. Phys. Chem. Chem. Phys. 1999, 1, 5315-5321.
-
(1999)
Phys. Chem. Chem. Phys
, vol.1
, pp. 5315-5321
-
-
Christensen, P.A.1
Eameaim, J.2
Hamnett, A.3
-
7
-
-
22544440897
-
-
Araujo, P. Z.; Mendive, C. B.; García Rodenas, L. A.; Morando, P. J.; Regazzoni, A. E.; Blesa, M. A.; Bahnemann, D. Colloids Surf. A 2005, 265, 73.
-
(2005)
Colloids Surf. A
, vol.265
, pp. 73
-
-
Araujo, P.Z.1
Mendive, C.B.2
García Rodenas, L.A.3
Morando, P.J.4
Regazzoni, A.E.5
Blesa, M.A.6
Bahnemann, D.7
-
8
-
-
24744444926
-
-
Lana-Villareal, T.; Rodes, A.; Pérez, J. M.; Gómez, R. J. Am. Chem. Soc. 2005, 127, 12601-12611.
-
(2005)
J. M.; Gómez, R. J. Am. Chem. Soc
, vol.127
, pp. 12601-12611
-
-
Lana-Villareal, T.1
Rodes, A.2
Pérez3
-
10
-
-
61849132884
-
-
Lana-Villareal, T.; Monllor-Satoca, D.; Rodes, A.; Gómez, R. Catal. Today 2007, 129, 89-95.
-
(2007)
Catal. Today
, vol.129
, pp. 89-95
-
-
Lana-Villareal, T.1
Monllor-Satoca, D.2
Rodes, A.3
Gómez, R.4
-
14
-
-
54849406887
-
-
Berger, T.; Lana-Villarreal, T.; Monllor-Satoca, D.; Gómez, R. J. Phys. Chem. C 2008, 112, 15920-15928.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 15920-15928
-
-
Berger, T.1
Lana-Villarreal, T.2
Monllor-Satoca, D.3
Gómez, R.4
-
15
-
-
34848833527
-
-
Berger, T.; Lana-Villarreal, T.; Monllor-Satoca, D.; Gómez, R. Chem. Phys. Lett. 2007, 447, 91-95.
-
(2007)
Chem. Phys. Lett
, vol.447
, pp. 91-95
-
-
Berger, T.1
Lana-Villarreal, T.2
Monllor-Satoca, D.3
Gómez, R.4
-
17
-
-
34547361483
-
-
Berger, T.; Lana-Villarreal, T.; Monllor-Satoca, D.; Gómez, R. J Phys. Chem. C 2007, 111, 9936-9942.
-
(2007)
J Phys. Chem. C
, vol.111
, pp. 9936-9942
-
-
Berger, T.1
Lana-Villarreal, T.2
Monllor-Satoca, D.3
Gómez, R.4
-
18
-
-
2342516167
-
-
Rotzinger, F. P.; Kesselman-Truttmann, J. M; Hug, S. J.; Shklover, V.; Grätzel, M. J. Phys. Chem. B 2004, 708, 5004-5017.
-
(2004)
J. Phys. Chem. B
, vol.708
, pp. 5004-5017
-
-
Rotzinger, F.P.1
Kesselman-Truttmann, J.M.2
Hug, S.J.3
Shklover, V.4
Grätzel, M.5
-
19
-
-
61849089367
-
-
The 10-fold higher intensity results from a 10-fold higher value of the so-called effective path length (de) in the case of ZnSe. The value of de represents the path length in a (hypothetic) transmission experiment resulting in the same absorption as in the ATR experiment. For bulk aqueous solutions, de can be calculated according to ref 11 as de, n2d p, 2 cos θ)E622, where n 21, n2/n1 E0,2 is the relative electric field amplitude in medium 2 at a distance z, 0 from the interface, dp is the penetration depth eq 1, and θ is the angle of incidence
-
p is the penetration depth (eq 1), and θ is the angle of incidence.
-
-
-
-
20
-
-
61849170120
-
-
Measurements using the Si prism instead of the ZnSe prism were also performed but resulted in too low signal-to-noise ratios
-
Measurements using the Si prism instead of the ZnSe prism were also performed but resulted in too low signal-to-noise ratios.
-
-
-
-
21
-
-
61849134879
-
-
Assuming a fraction of particles of 0.5 for both TiO2 layers, the refractive index n2 of the films can be determined from the weighed average of the refractive index of the particle material and the aqueous solution (ref 5, With n(H2O, 1.34 and n(TiO2, 2.0, n2 is calculated to be 1.67. Thus, the penetration depth (dp) of the evanescent wave at 1500 cm-1 amounts to 3.52 μm in the case of a nanorod film on ZnSe and 0.44 μm in the case of a nanowire film on Si. It has to be mentioned that the determination of the penetration depth for the system Si(ZnSe)/TiO2/solution by using a two-layer model is only valid for a film thickness d · dp. With d, 8 μm in the case of the nanorod film and d, 2 μm in the case of the nanowire film, this requirement is fulfilled for both samples
-
p. With d = 8 μm in the case of the nanorod film and d = 2 μm in the case of the nanowire film, this requirement is fulfilled for both samples.
-
-
-
-
22
-
-
61849127815
-
-
In a recent study (ref 17) we found that, for a given thickness, the real surface area of a nanowire film is around 24 times larger than the surface area of a film prepared from nanorods by thermal annealing. Assuming that the decrease of the specific surface area during thermal annealing is compensated by the decrease of the film porosity and estimating the difference of the effective path lengths from the measurements using the uncoated prisms de[ZnSe] ∼10de[Si, Figure 2, the surface area of the nanowire film on Si being probed in the ATR-IR experiment can be estimated to be around 2.4 times that of the nanorod film on ZnSe. This estimate approximately matches the relative intensities of the IR bands in Figure 3
-
e[Si], Figure 2), the surface area of the nanowire film on Si being probed in the ATR-IR experiment can be estimated to be around 2.4 times that of the nanorod film on ZnSe. This estimate approximately matches the relative intensities of the IR bands in Figure 3.
-
-
-
-
23
-
-
61849106038
-
-
Origin 7, Origin Lab. Corp., 1991-2002.
-
Origin 7, Origin Lab. Corp., 1991-2002.
-
-
-
-
24
-
-
0345440143
-
-
Connor, P. A.; Dobson, K. D.; McQuillan, A. J. Langmuir 1999, 15, 2402-2408.
-
(1999)
Langmuir
, vol.15
, pp. 2402-2408
-
-
Connor, P.A.1
Dobson, K.D.2
McQuillan, A.J.3
-
25
-
-
61849084198
-
-
The broad peak at 1530/1528 cm-1 may result from a number of additional adsorbate geometries due to the presence of various, less abundant adsorption sites (crystal faces) on the nanocrystals
-
-1 may result from a number of additional adsorbate geometries due to the presence of various, less abundant adsorption sites (crystal faces) on the nanocrystals.
-
-
-
-
26
-
-
6344286026
-
-
Zhang, Q. L.; Du, L. C; Weng, Y. X.; Wang, L.; Chen, H. Y.; Li, J. Q. J. Phys. Chem. B 2004, 108, 15077-15083.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 15077-15083
-
-
Zhang, Q.L.1
Du, L.C.2
Weng, Y.X.3
Wang, L.4
Chen, H.Y.5
Li, J.Q.6
-
27
-
-
0000256431
-
-
Hayden, B. E.; King, A.; Newton, M. A. J. Phys. Chem. B 1999, 103, 203-208.
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 203-208
-
-
Hayden, B.E.1
King, A.2
Newton, M.A.3
-
28
-
-
4544340501
-
-
Uetsuka, H.; Henderson, M. A.; Sasahara, A.; Onishi, H. J. Phys. Chem B 2004, 108, 13706-13710.
-
(2004)
J. Phys. Chem B
, vol.108
, pp. 13706-13710
-
-
Uetsuka, H.1
Henderson, M.A.2
Sasahara, A.3
Onishi, H.4
-
30
-
-
0242417578
-
-
Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. J. Am. Chem. Soc. 2003, 125, 3680-3681.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 3680-3681
-
-
Chen, Y.X.1
Miki, A.2
Ye, S.3
Sakai, H.4
Osawa, M.5
-
31
-
-
0034713432
-
-
Endo, M; Matsumoto, T.; Kubota, J.; Domen, K.; Hirose, C. J. Phys. Chem. B 2000, 104, 4916-4922.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 4916-4922
-
-
Endo, M.1
Matsumoto, T.2
Kubota, J.3
Domen, K.4
Hirose, C.5
-
32
-
-
61849135695
-
-
Monllor-Satoca, D.; Borja, L.; Rodes, A.; Gó, R.; Salvador, P. ChemPhysChem 2006, 7,
-
(2006)
ChemPhysChem
, vol.7
-
-
Monllor-Satoca, D.1
Borja, L.2
Rodes, A.3
Gó, R.4
Salvador, P.5
|