메뉴 건너뛰기




Volumn 30, Issue 6, 2009, Pages 615-622

Ore image segmentation by learning image and shape features

Author keywords

Machine learning; Ore fragment segmentation; Ore size analysis

Indexed keywords

DIGITAL IMAGE STORAGE; IMAGE ENHANCEMENT; IMAGE QUALITY; IMAGE SEGMENTATION; OIL SANDS; ORES; ROBOT LEARNING;

EID: 61849114154     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2008.12.015     Document Type: Article
Times cited : (32)

References (15)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 34247335352 scopus 로고    scopus 로고
    • Classification driven watershed segmentation
    • Levner I., and Zhang H. Classification driven watershed segmentation. IEEE Trans. IP 16 5 (2007) 1437-1445
    • (2007) IEEE Trans. IP , vol.16 , Issue.5 , pp. 1437-1445
    • Levner, I.1    Zhang, H.2
  • 8
    • 1942532718 scopus 로고    scopus 로고
    • Level set analysis for leukocyte detection and tracking
    • Mukherjee D., Ray N., and Acton S. Level set analysis for leukocyte detection and tracking. IEEE Trans. IP 13 4 (2004) 1-11
    • (2004) IEEE Trans. IP , vol.13 , Issue.4 , pp. 1-11
    • Mukherjee, D.1    Ray, N.2    Acton, S.3
  • 9
    • 0033871373 scopus 로고    scopus 로고
    • Scale space classification using area morphology
    • Mukherjee D., and Acton S. Scale space classification using area morphology. IEEE Trans. IP 9 4 (2000) 623-635
    • (2000) IEEE Trans. IP , vol.9 , Issue.4 , pp. 623-635
    • Mukherjee, D.1    Acton, S.2
  • 10
    • 0018306059 scopus 로고
    • A threshold selection method for gray level histograms
    • Otsu N. A threshold selection method for gray level histograms. IEEE Trans. SMC 9 (1979) 62-66
    • (1979) IEEE Trans. SMC , vol.9 , pp. 62-66
    • Otsu, N.1
  • 11
  • 12
    • 67349252469 scopus 로고    scopus 로고
    • An evaluation metric for image segmenation of multiple objects
    • in press, doi:10.1016/j.imavis.2008.09.008
    • Polak, M., Zhang, H., Pi, M., in press. An evaluation metric for image segmenation of multiple objects. Image and Vision Computing Elsevier, doi:10.1016/j.imavis.2008.09.008.
    • Image and Vision Computing Elsevier
    • Polak, M.1    Zhang, H.2    Pi, M.3
  • 13
    • 0029359575 scopus 로고
    • Flat zones filtering, connected operators, and filters by reconstruction
    • Salembier P., and Serra J. Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. IP 4 8 (1995) 1153-1160
    • (1995) IEEE Trans. IP , vol.4 , Issue.8 , pp. 1153-1160
    • Salembier, P.1    Serra, J.2
  • 14
    • 0033682358 scopus 로고    scopus 로고
    • Boosting image retrieval
    • Tieu K., and Viola P. Boosting image retrieval. Proc. CVPR (2000) 228-235
    • (2000) Proc. CVPR , pp. 228-235
    • Tieu, K.1    Viola, P.2
  • 15
    • 0030247213 scopus 로고    scopus 로고
    • Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation
    • Zhu S., and Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. PAMI 18 9 (1996)
    • (1996) IEEE Trans. PAMI , vol.18 , Issue.9
    • Zhu, S.1    Yuille, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.