메뉴 건너뛰기




Volumn 37, Issue 1, 2009, Pages 132-136

Incremental locally linear embedding algorithm based on orthogonal iteration method

Author keywords

Increment; Locally linear embedding (LLE); Manifold learning; Orthogonal iteration

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS; PARTICLE SIZE ANALYSIS;

EID: 61649109298     PISSN: 03722112     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (10)
  • 1
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J B Tenenbaum, V de Silva, et al. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2
  • 2
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S T Roweis, L K Saul. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 3
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Cambridge, MA: MIT Press
    • M Belkin, P Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering[A]. Neural Information Processing Systems 14[C]. Cambridge, MA: MIT Press, 2002, 585-591.
    • (2002) Neural Information Processing Systems 14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 2942555399 scopus 로고    scopus 로고
    • Nonlinear manifold learning for data stream
    • Florida: Orlando
    • M H Law, N Zhang, et al. Nonlinear manifold learning for data stream[A]. Proceedings of SIAM Data Mining[C]. Florida: Orlando, 2004. 33-44.
    • (2004) Proceedings of SIAM Data Mining , pp. 33-44
    • Law, M.H.1    Zhang, N.2
  • 6
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L K Saul, S T Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds[J]. Journal of Machine Learning Research, 2003, 4(Jun): 119-155.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 7
    • 22844435049 scopus 로고    scopus 로고
    • Incremental locally linear embedding algorithm
    • Olga Kouropteva, Oleg Okun et al. Incremental locally linear embedding algorithm[J]. Pattern Recognition, 2005, 38(10): 1764-1767.
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1764-1767
    • Kouropteva, O.1    Okun, O.2
  • 8
    • 34948909153 scopus 로고    scopus 로고
    • A dynamically incremental manifold learning algorithm
    • Chinese source
    • Zeng Xianhua, Luo Siwei. A dynamically incremental manifold learning algorithm[J]. Journal of Computer Research and Development, 2007, 44(9): 1462-1468. (in Chinese)
    • (2007) Journal of Computer Research and Development , vol.44 , Issue.9 , pp. 1462-1468
    • Zeng, X.1    Luo, S.2
  • 9
    • 0004236492 scopus 로고    scopus 로고
    • Baltimore: Johns Hopkins University Press
    • G H Golub, C F Van Loan. Matrix Computations[M]. Baltimore: Johns Hopkins University Press, 1996. 422-424.
    • (1996) Matrix Computations , pp. 422-424
    • Golub, G.H.1    van Loan, C.F.2
  • 10
    • 61649094076 scopus 로고    scopus 로고
    • Data sets for nonlinear dimensionality reduction
    • Data sets for nonlinear dimensionality reduction[OL] http://isomap.stanford.edu/datasets.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.