메뉴 건너뛰기




Volumn 27, Issue 7, 2009, Pages 797-802

Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks

Author keywords

Cheminformatics; Cyclic structure; Ionic liquids; Molecular representation; Poly(meth)acrylates; QSPR; Recursive neural network

Indexed keywords

CHEMINFORMATICS; CYCLIC STRUCTURE; MOLECULAR REPRESENTATION; POLY(METH)ACRYLATES; QSPR; RECURSIVE NEURAL NETWORK;

EID: 61449168800     PISSN: 10933263     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmgm.2008.12.001     Document Type: Article
Times cited : (20)

References (26)
  • 1
    • 26944497768 scopus 로고    scopus 로고
    • A novel approach to QSPR/QSAR based on neural networks for structures
    • (Soft Computing Approaches in Chemistry)
    • Micheli A., Sperduti A., Starita A., and Bianucci A.M. A novel approach to QSPR/QSAR based on neural networks for structures. Studies in Fuzziness and Soft Computing 120 (2003) 265-296 (Soft Computing Approaches in Chemistry)
    • (2003) Studies in Fuzziness and Soft Computing , vol.120 , pp. 265-296
    • Micheli, A.1    Sperduti, A.2    Starita, A.3    Bianucci, A.M.4
  • 2
    • 0033878122 scopus 로고    scopus 로고
    • Application of cascade correlation networks for structures to chemistry
    • Bianucci A.M., Micheli A., Sperduti A., and Starita A. Application of cascade correlation networks for structures to chemistry. Appl. Int. J. 12 (2000) 117-146
    • (2000) Appl. Int. J. , vol.12 , pp. 117-146
    • Bianucci, A.M.1    Micheli, A.2    Sperduti, A.3    Starita, A.4
  • 3
    • 0035221306 scopus 로고    scopus 로고
    • Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines
    • Micheli A., Sperduti A., Starita A., and Bianucci A.M. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines. J. Chem. Inf. Comput. Sci. 41 (2001) 202-218
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 202-218
    • Micheli, A.1    Sperduti, A.2    Starita, A.3    Bianucci, A.M.4
  • 5
    • 84962476960 scopus 로고    scopus 로고
    • Predicting physical chemical properties of compounds from molecular structures by recursive neural networks
    • Bernazzani L., Duce C., Micheli A., Mollica V., Sperduti A., Starita A., and Tiné M.R. Predicting physical chemical properties of compounds from molecular structures by recursive neural networks. J. Chem. Inf. Model. 46 (2006) 2030-2042
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2030-2042
    • Bernazzani, L.1    Duce, C.2    Micheli, A.3    Mollica, V.4    Sperduti, A.5    Starita, A.6    Tiné, M.R.7
  • 6
    • 40349091555 scopus 로고    scopus 로고
    • Ionic liquids: prediction of their melting points by a recursive neural network model
    • Bini R., Chiappe C., Duce C., Micheli A., Solaro R., Starita A., and Tiné M.R. Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem. 10 (2008) 306-309
    • (2008) Green Chem. , vol.10 , pp. 306-309
    • Bini, R.1    Chiappe, C.2    Duce, C.3    Micheli, A.4    Solaro, R.5    Starita, A.6    Tiné, M.R.7
  • 7
    • 33646058556 scopus 로고    scopus 로고
    • Prediction of chemical-physical properties by neural networks for structures
    • Duce C., Micheli A., Solaro R., Starita A., and Tiné M.R. Prediction of chemical-physical properties by neural networks for structures. Macromol. Symp. 234 (2006) 13-19
    • (2006) Macromol. Symp. , vol.234 , pp. 13-19
    • Duce, C.1    Micheli, A.2    Solaro, R.3    Starita, A.4    Tiné, M.R.5
  • 8
    • 33646794450 scopus 로고    scopus 로고
    • Prediction of polymer properties from their structure by recursive neural networks
    • Duce C., Micheli A., Starita A., Tiné M.R., and Solaro R. Prediction of polymer properties from their structure by recursive neural networks. Macromol. Rapid Commun. 27 (2006) 712-716
    • (2006) Macromol. Rapid Commun. , vol.27 , pp. 712-716
    • Duce, C.1    Micheli, A.2    Starita, A.3    Tiné, M.R.4    Solaro, R.5
  • 10
    • 35748951637 scopus 로고    scopus 로고
    • Prediction of the glass transition temperature of (meth)acrylic polymers containing phenyl groups by recursive neural network
    • Bertinetto C., Duce C., Micheli A., Solaro R., Starita A., and Tiné M.R. Prediction of the glass transition temperature of (meth)acrylic polymers containing phenyl groups by recursive neural network. Polymer 48 (2007) 7121-7129
    • (2007) Polymer , vol.48 , pp. 7121-7129
    • Bertinetto, C.1    Duce, C.2    Micheli, A.3    Solaro, R.4    Starita, A.5    Tiné, M.R.6
  • 11
    • 0023965741 scopus 로고
    • SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
    • Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28 (1988) 31-36
    • (1988) J. Chem. Inf. Comput. Sci. , vol.28 , pp. 31-36
    • Weininger, D.1
  • 12
    • 61449247435 scopus 로고    scopus 로고
    • http://www.daylight.com/smiles/index.html.
  • 13
    • 0000293407 scopus 로고
    • Generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service
    • Morgan H.L. Generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J. Chem. Doc. 5 (1965) 107-113
    • (1965) J. Chem. Doc. , vol.5 , pp. 107-113
    • Morgan, H.L.1
  • 15
    • 0002603293 scopus 로고
    • Practical graph isomorphism
    • McKay B.D. Practical graph isomorphism. Congressus Numerantium 30 (1981) 45-87
    • (1981) Congressus Numerantium , vol.30 , pp. 45-87
    • McKay, B.D.1
  • 16
    • 34249874435 scopus 로고    scopus 로고
    • The IUPAC international chemical identifier: InChI-a new standard for molecular informatics
    • McNaught A. The IUPAC international chemical identifier: InChI-a new standard for molecular informatics. Chem. Int. 28 (2006) 12-14
    • (2006) Chem. Int. , vol.28 , pp. 12-14
    • McNaught, A.1
  • 19
    • 13144260675 scopus 로고    scopus 로고
    • Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks
    • Carrera G., and Aires-de-Sousa J. Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem. 7 (2005) 20-27
    • (2005) Green Chem. , vol.7 , pp. 20-27
    • Carrera, G.1    Aires-de-Sousa, J.2
  • 21
    • 0032028350 scopus 로고    scopus 로고
    • Quantitative structure-property relationship (QPSR) correlation of glass transition temperatures of high molecular weight polymers
    • Katritzky A.R., Sild S., Lobanov V.S., and Karelson M. Quantitative structure-property relationship (QPSR) correlation of glass transition temperatures of high molecular weight polymers. J. Chem. Inf. Comput. Sci. 38 (1998) 300-304
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 300-304
    • Katritzky, A.R.1    Sild, S.2    Lobanov, V.S.3    Karelson, M.4
  • 22
    • 0037075462 scopus 로고    scopus 로고
    • Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices
    • Garcia-Domenech R., and de Julián-Ortiz J.V. Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices. J. Phys. Chem. B 106 (2002) 1501-1507
    • (2002) J. Phys. Chem. B , vol.106 , pp. 1501-1507
    • Garcia-Domenech, R.1    de Julián-Ortiz, J.V.2
  • 24
    • 0030101886 scopus 로고    scopus 로고
    • On the use of computational neural networks for the prediction of polymer properties
    • Sumpter B.G., and Noid D.W. On the use of computational neural networks for the prediction of polymer properties. J. Therm. Anal. 46 (1996) 833-851
    • (1996) J. Therm. Anal. , vol.46 , pp. 833-851
    • Sumpter, B.G.1    Noid, D.W.2
  • 25
    • 0032427442 scopus 로고    scopus 로고
    • Computational neural networks and the rational design of polymeric materials: the next generation polycarbonates
    • Ulmer C.W., Smith D.A., Sumpter B.G., and Noid D.I. Computational neural networks and the rational design of polymeric materials: the next generation polycarbonates. Comput. Theor. Polym. Sci. 8 (1998) 311-321
    • (1998) Comput. Theor. Polym. Sci. , vol.8 , pp. 311-321
    • Ulmer, C.W.1    Smith, D.A.2    Sumpter, B.G.3    Noid, D.I.4
  • 26
    • 0036522801 scopus 로고    scopus 로고
    • Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks
    • Mattioni B.E., and Jurs P.C. Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks. J. Chem. Inf. Comp. Sci. 42 (2002) 232-324
    • (2002) J. Chem. Inf. Comp. Sci. , vol.42 , pp. 232-324
    • Mattioni, B.E.1    Jurs, P.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.