-
1
-
-
1842863220
-
Structure and Nature
-
See W.V. Quine, 'Structure and Nature', Journal of Philosophy, 89 (1992), pp. 5-9, for an example of a semantic form of global structuralism
-
(1992)
Journal of Philosophy
, vol.89
, pp. 5-9
-
-
Quine, W.V.1
-
2
-
-
0000670545
-
What is Structural Realism?
-
See J. Ladyman, 'What is Structural Realism?', Studies in the History and Philosophy of Science, 29 (1998), pp. 409-24, for an example of structuralism about the physical world
-
(1998)
Studies in the History and Philosophy of Science
, vol.29
, pp. 409-424
-
-
Ladyman, J.1
-
3
-
-
36749012924
-
The Thesis that Mathematics is Logic
-
Cambridge UP
-
H. Putnam, 'The Thesis that Mathematics is Logic', repr. in his Mathematics, Matter and Method (Cambridge UP, 1975), pp. 12-42
-
(1975)
Mathematics, Matter and Method
, pp. 12-42
-
-
Putnam, H.1
-
4
-
-
33751136809
-
Mathematics without Foundations
-
An early example is Putnam, 'Mathematics without Foundations', Journal of Philosophy, 64 (1967), pp. 5-22
-
(1967)
Journal of Philosophy
, vol.64
, pp. 5-22
-
-
-
6
-
-
0009029548
-
Mathematics as a Science of Patterns: Ontology and Reference
-
at p. 530
-
M. Resnik, 'Mathematics as a Science of Patterns: Ontology and Reference', Noûs, 15 (1981), pp. 529-50, at p. 530
-
(1981)
Noûs
, vol.15
, pp. 529-550
-
-
Resnik, M.1
-
7
-
-
0039777602
-
The Structuralist View of Mathematical Objects
-
at p. 303
-
a passage quoted approvingly in a large number of defences of structuralism, e.g., C. Parsons, 'The Structuralist View of Mathematical Objects', Synthese, 84 (1990), pp. 303-46, at p. 303
-
(1990)
Synthese
, vol.84
, pp. 303-346
-
-
Parsons, C.1
-
12
-
-
0040019682
-
Mathematical Intuition
-
§II
-
See, e.g., Parsons, 'Mathematical Intuition', Proceedings of the Aristotelian Society, 80 (1979/80), pp. 145-68, at §II
-
(1979)
Proceedings of the Aristotelian Society
, vol.80
, pp. 145-168
-
-
Parsons1
-
16
-
-
24644471863
-
Structuralism and Metaphysics
-
at p. 57
-
Parsons, 'Structuralism and Metaphysics', The Philosophical Quarterly, 54 (2004), pp. 56-77, at p. 57
-
(2004)
The Philosophical Quarterly
, vol.54
, pp. 56-77
-
-
Parsons1
-
17
-
-
33751168903
-
Review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology
-
at p. 286
-
See J.P. Burgess, review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology, Notre Dame Journal of Formal Logic, 40 (1999), pp. 283-91, at p. 286
-
(1999)
Notre Dame Journal of Formal Logic
, vol.40
, pp. 283-291
-
-
Burgess, J.P.1
-
18
-
-
79953465136
-
Critical Notice of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology
-
at pp. 97-9
-
Ø. Linnebo, Critical Notice of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology, Philosophia Mathematica, 11 (2003), pp. 92-104, at pp. 97-9
-
(2003)
Philosophia Mathematica
, vol.11
, pp. 92-104
-
-
Linnebo Ø1
-
19
-
-
84920008312
-
Structuralism Reconsidered
-
S. Shapiro (ed.) Oxford: Clarendon Press at pp. 583-4
-
F. MacBride, 'Structuralism Reconsidered', in S. Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic (Oxford: Clarendon Press, 2005), pp. 563-89, at pp. 583-4
-
(2005)
Oxford Handbook of Philosophy of Mathematics and Logic
, pp. 563-589
-
-
MacBride, F.1
-
20
-
-
53949118393
-
Structure and Identity
-
F. MacBride (ed.) Oxford: Clarendon Press at pp. 121-31
-
See Shapiro, 'Structure and Identity', in F. MacBride (ed.), Identity and Modality (Oxford: Clarendon Press, 2006), pp. 109-45, at pp. 121-31
-
(2006)
Identity and Modality
, pp. 109-145
-
-
Shapiro1
-
22
-
-
84946783292
-
Intrinsic vs Extrinsic Properties
-
E.N. Zalta ed
-
See B. Weatherson, 'Intrinsic vs Extrinsic Properties', in E.N. Zalta (ed.), Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/archives/ fall2006/entries/intrinsic-extrinsic
-
Stanford Encyclopedia of Philosophy
-
-
Weatherson, B.1
-
23
-
-
0345046274
-
Mathematics as a Science of Patterns: Epistemology
-
at p. 95
-
Resnik, 'Mathematics as a Science of Patterns: Epistemology', Noûs, 16 (1982), pp. 95-105, at p. 95
-
(1982)
Noûs
, vol.16
, pp. 95-105
-
-
Resnik1
-
24
-
-
35648998164
-
Individuation
-
M. Loux and D. Zimmerman (eds) Oxford UP
-
E.J. Lowe, in his 'Individuation', in M. Loux and D. Zimmerman (eds), Oxford Handbook of Metaphysics (Oxford UP, 2003), pp. 75-95
-
(2003)
Oxford Handbook of Metaphysics
, pp. 75-95
-
-
Lowe, E.J.1
-
25
-
-
84887299798
-
Ontological Dependence
-
http://plato.stanford.edu/archives/sum2005/entries/dependence- Ontological
-
and 'Ontological Dependence', in Zalta (ed.), Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/archives/sum2005/entries/dependence- ontological, http://plato.stanford.edu/archives/sum2005/entries/dependence- ontological, defends the ban on cyclical relations of dependence
-
Stanford Encyclopedia of Philosophy
-
-
Zalta1
-
26
-
-
9444221671
-
Ontological Dependence
-
K. Fine, 'Ontological Dependence', Proceedings of the Aristotelian Society, 95 (1995), pp. 269-90, defends a qualified form of the principle (WF)
-
(1995)
Proceedings of the Aristotelian Society
, vol.95
, pp. 269-290
-
-
Fine, K.1
-
27
-
-
21244473764
-
Three Varieties of Mathematical Structuralism
-
This principle is also implicit in Hellman, 'Three Varieties of Mathematical Structuralism', Philosophia Mathematica, 9 (2001), pp. 184-211
-
(2001)
Philosophia Mathematica
, vol.9
, pp. 184-211
-
-
Hellman1
-
28
-
-
53949087365
-
What Constitutes the Numerical Diversity of Mathematical Objects?
-
and in MacBride, 'What Constitutes the Numerical Diversity of Mathematical Objects?', Analysis, 66 (2006), pp. 63-9, to be discussed below
-
(2006)
Analysis
, vol.66
, pp. 63-69
-
-
MacBride1
-
31
-
-
84906494774
-
Structuralism Reconsidered
-
at p. 581
-
Indeed, in his 'Structuralism Reconsidered', in Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic, pp. 563-89, at p. 581, MacBride expresses serious reservations about this kind of argument
-
Oxford Handbook of Philosophy of Mathematics and Logic
, pp. 563-589
-
-
Shapiro1
-
34
-
-
80053684281
-
The Structuralist View of Mathematical Objects
-
See Parsons, 'The Structuralist View of Mathematical Objects', pp. 337-8
-
-
-
Parsons1
-
35
-
-
0010030589
-
The Iterative Conception of Set
-
See G. Boolos, 'The Iterative Conception of Set', Journal of Philosophy, 68 (1971), pp. 215-32
-
(1971)
Journal of Philosophy
, vol.68
, pp. 215-232
-
-
Boolos, G.1
-
37
-
-
24644500637
-
Structuralism and the Concept of Set
-
W. Sinnott-Armstrong (ed.) Cambridge UP
-
See Parsons, 'Structuralism and the Concept of Set', in W. Sinnott-Armstrong (ed.), Modality, Morality, and Belief (Cambridge UP, 1994), pp. 74-92
-
(1994)
Modality, Morality, and Belief
, pp. 74-92
-
-
Parsons1
-
38
-
-
2942697778
-
Wright, Frege's Conception of Numbers as Objects
-
at pp. 253-4
-
It will allow us to derive Burali-Forti's paradox: see A.P. Hazen, review of Crispin Wright, Frege's Conception of Numbers as Objects, Australasian Journal of Philosophy, 63 (1985), pp. 250-4, at pp. 253-4
-
(1985)
Australasian Journal of Philosophy
, vol.63
, pp. 250-254
-
-
Hazen, A.P.1
-
39
-
-
84870139294
-
Bad Company Tamed
-
For a more systematic and satisfactory solution, see Ø. Linnebo, 'Bad Company Tamed', forthcoming in Synthese, 2008
-
(2008)
Synthese
-
-
Linnebo Ø1
-
40
-
-
21244462869
-
The Identity Problem for Realist Structuralism
-
What about the positions of non-rigid abstract structures? Are they too objects? If so, how are they individuated? For the purposes of establishing my compromise view, I need not take a stand on these difficult questions. For discussion, see J. Keränen, 'The Identity Problem for Realist Structuralism', Philosophia Mathematica, 9 (2001), pp. 308-30
-
(2001)
Philosophia Mathematica
, vol.9
, pp. 308-330
-
-
Keränen, J.1
-
42
-
-
21244472093
-
Essence and Modality
-
inj, ed, Atascadero: Ridgeview
-
See Fine, 'Essence and Modality', inj. Tomberlin (ed.), Philosophical Perspectives, 8: Language and Logic (Atascadero: Ridgeview, 1994), pp. 1-16
-
(1994)
Philosophical Perspectives, 8: Language and Logic
, pp. 1-16
-
-
Fine1
|