-
3
-
-
50249161151
-
-
10.1103/PhysRevLett.101.087004
-
K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008). 10.1103/PhysRevLett.101.087004
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 087004
-
-
Kuroki, K.1
Onari, S.2
Arita, R.3
Usui, H.4
Tanaka, Y.5
Kontani, H.6
Aoki, H.7
-
4
-
-
49149105485
-
-
10.1103/PhysRevLett.101.057003
-
I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008). 10.1103/PhysRevLett.101.057003
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 057003
-
-
Mazin, I.I.1
Singh, D.J.2
Johannes, M.D.3
Du, M.H.4
-
5
-
-
55149103292
-
-
10.1103/PhysRevB.78.134524
-
D. Parker, O. V. Dolgov, M. M. Korshunov, A. A. Golubov, and I. I. Mazin, Phys. Rev. B 78, 134524 (2008). 10.1103/PhysRevB.78.134524
-
(2008)
Phys. Rev. B
, vol.78
, pp. 134524
-
-
Parker, D.1
Dolgov, O.V.2
Korshunov, M.M.3
Golubov, A.A.4
Mazin, I.I.5
-
6
-
-
55149087861
-
-
10.1103/PhysRevB.78.134523
-
Y. Bang and H.-Y. Choi, Phys. Rev. B 78, 134523 (2008). 10.1103/PhysRevB.78.134523
-
(2008)
Phys. Rev. B
, vol.78
, pp. 134523
-
-
Bang, Y.1
Choi, H.-Y.2
-
7
-
-
60949093421
-
-
arXiv:0806.3908 (unpublished).
-
Ł. Malone, J. D. Fletcher, A. Serafin, A. Carrington, N. D. Zhigadlo, Z. Bukowksi, S. Katrych, and J. Karpinski, arXiv:0806.3908 (unpublished).
-
-
-
Malone, Ł.1
Fletcher, J.D.2
Serafin, A.3
Carrington, A.4
Zhigadlo, N.D.5
Bukowksi, Z.6
Katrych, S.7
Karpinski, J.8
-
8
-
-
15744405524
-
-
10.1103/PhysRevB.71.054501
-
E. J. Nicol and J. P. Carbotte, Phys. Rev. B 71, 054501 (2005). 10.1103/PhysRevB.71.054501
-
(2005)
Phys. Rev. B
, vol.71
, pp. 054501
-
-
Nicol, E.J.1
Carbotte, J.P.2
-
9
-
-
46049106327
-
-
10.1103/PhysRevB.77.214526
-
O. V. Dolgov and A. A. Golubov, Phys. Rev. B 77, 214526 (2008). 10.1103/PhysRevB.77.214526
-
(2008)
Phys. Rev. B
, vol.77
, pp. 214526
-
-
Dolgov, O.V.1
Golubov, A.A.2
-
12
-
-
29144498330
-
-
The square-well model is not a consistent approximation as different functional forms are assumed for Δ in the first and in the second Eliashberg equations. Sometimes this may lead to qualitative errors [e.g., 10.1103/PhysRevLett.95.257003
-
The square-well model is not a consistent approximation as different functional forms are assumed for Δ in the first and in the second Eliashberg equations. Sometimes this may lead to qualitative errors [e.g., O. V. Dolgov, I. I. Mazin, A. A. Golubov, S. Y. Savrasov, and E. G. Maksimov, Phys. Rev. Lett. 95, 257003 (2005)]. In this particular case, however, it can be shown that using more accurate and consistent functional forms, Δ1 (ω) = Δ1 (0) Ω2 / (ω2 + Ω2) and Z1 (ω) =1+ (λ12 Ω/ω) tan-1 (ω/Ω), leads to essentially the same result. 10.1103/PhysRevLett.95.257003
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 257003
-
-
Dolgov, O.V.1
Mazin, I.I.2
Golubov, A.A.3
Savrasov, S.Y.4
Maksimov, E.G.5
-
13
-
-
0001240661
-
-
10.1103/RevModPhys.62.1027
-
J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990). 10.1103/RevModPhys.62. 1027
-
(1990)
Rev. Mod. Phys.
, vol.62
, pp. 1027
-
-
Carbotte, J.P.1
-
14
-
-
0037350810
-
-
10.1016/S0921-4534(02)02299-2
-
I. I. Mazin and V. P. Antropov, Physica C 385, 49 (2003). 10.1016/S0921-4534(02)02299-2
-
(2003)
Physica C
, vol.385
, pp. 49
-
-
Mazin, I.I.1
Antropov, V.P.2
-
16
-
-
0000758148
-
-
10.1103/PhysRevB.34.8190
-
D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986). 10.1103/PhysRevB.34.8190
-
(1986)
Phys. Rev. B
, vol.34
, pp. 8190
-
-
Scalapino, D.J.1
Loh Jr., E.2
Hirsch, J.E.3
|