메뉴 건너뛰기




Volumn , Issue , 2008, Pages 228-233

A multiple SVR approach with time lags for traffic flow prediction

Author keywords

[No Author keywords available]

Indexed keywords

CALIFORNIA; LOCAL MODELS; LOOP DETECTORS; MODEL INPUTS; MULTIPLE MODELS; PERFORMANCE MEASUREMENT SYSTEMS; SHORT-TERM TRAFFIC FLOWS; SPATIAL-TEMPORAL CORRELATIONS; SUPPORT VECTOR REGRESSIONS; TIME INTERVALS; TIME LAGS; TRAFFIC FLOW PREDICTIONS; TRAFFIC FLOWS; UPSTREAM FLOWS;

EID: 60849084918     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITSC.2008.4732663     Document Type: Conference Paper
Times cited : (14)

References (20)
  • 1
    • 34249888176 scopus 로고    scopus 로고
    • The Selective Random Subspace Predictor for Traffic Flow Forecasting
    • S.l. Sun, C.S. Zhang, "The Selective Random Subspace Predictor for Traffic Flow Forecasting" IEEE Transactions on Intelligent Transportation System, vol.8, no.2, pp.367-373, 2006.
    • (2006) IEEE Transactions on Intelligent Transportation System , vol.8 , Issue.2 , pp. 367-373
    • Sun, S.L.1    Zhang, C.S.2
  • 2
    • 0002324802 scopus 로고
    • Short term traffic forecasting using time series methods
    • C. K. Moorthy, B. G. Ratcliffe, "Short term traffic forecasting using time series methods," Transp. Plan. Technol, vol. 12, pp. 45-56,1988.
    • (1988) Transp. Plan. Technol , vol.12 , pp. 45-56
    • Moorthy, C.K.1    Ratcliffe, B.G.2
  • 3
    • 33847182046 scopus 로고    scopus 로고
    • Bayesian Time-Series Model for Short-Term Traffic Flow Forecasting
    • B Ghosh, B Basu, M. Mahony, "Bayesian Time-Series Model for Short-Term Traffic Flow Forecasting," Journal of Transportation Engineering, vol. 133(3), pp.180-189, 2007.
    • (2007) Journal of Transportation Engineering , vol.133 , Issue.3 , pp. 180-189
    • Ghosh, B.1    Basu, B.2    Mahony, M.3
  • 4
    • 0027807084 scopus 로고
    • Traffic prediction using neural networks
    • E.S. Yu, C.Y.R. Chen, "Traffic prediction using neural networks," Global Telecommunications Conf., vol.2, pp.991-995,1993.
    • (1993) Global Telecommunications Conf , vol.2 , pp. 991-995
    • Yu, E.S.1    Chen, C.Y.R.2
  • 5
    • 85173149165 scopus 로고    scopus 로고
    • B. Park, C.J. Messer, T.Urbanik II, Short-term freeway traffic forecasting using radial basis function neural network, Transportation Research Board, Washington D C: TRB, pp. 39-46, 1998.
    • B. Park, C.J. Messer, T.Urbanik II, "Short-term freeway traffic volume forecasting using radial basis function neural network", Transportation Research Board, Washington D C: TRB, pp. 39-46, 1998.
  • 6
    • 4444266556 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction using genetically optimized time-Delay-based neural networks
    • Washington, pp
    • B. Abdulhai, H. Porwal, W. Recker, "Short-term freeway traffic flow prediction using genetically optimized time-Delay-based neural networks", Transportation Research Board, Washington, pp. 1-14, 1999.
    • (1999) Transportation Research Board , pp. 1-14
    • Abdulhai, B.1    Porwal, H.2    Recker, W.3
  • 7
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • W.Zheng, Lee, D.-H., Q.Shi, "Short-term freeway traffic flow prediction: Bayesian combined neural network approach," Journal of Transportation Engineering, 132(2), 114-121, 2006.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.-H.2    Shi, Q.3
  • 8
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach
    • E. I. Vlahogianni, M. G. Karlaftis, J. C. Golias, "Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach," Transportation Research Part C, 211-234, 2005.
    • (2005) Transportation Research Part C , vol.211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 9
    • 16644384670 scopus 로고    scopus 로고
    • Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models
    • M. Zhong, S. Sharma, P. Lingras, "Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models," Journal of Computing in Civil Engineering, 19(1), 94-103, 2005.
    • (2005) Journal of Computing in Civil Engineering , vol.19 , Issue.1 , pp. 94-103
    • Zhong, M.1    Sharma, S.2    Lingras, P.3
  • 10
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filter theory
    • I. Okutani and Y. J. Stephanedes, "Dynamic prediction of traffic volume through Kalman filter theory," Transp.Res. Part B: Methodol, vol.18, pp. 1-11, 1984.
    • (1984) Transp.Res. Part B: Methodol , vol.18 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 11
    • 85135779506 scopus 로고    scopus 로고
    • Y. F. Tang, William H. K. Lam, Mei-Lam Tarn. Comparison of two non-parametric models for daily traffic forecasting in Hong Kong, Journal of Forecasting, 25, pp. 173-192, 2006.
    • Y. F. Tang, William H. K. Lam, Mei-Lam Tarn. "Comparison of two non-parametric models for daily traffic forecasting in Hong Kong," Journal of Forecasting, vol.25, pp. 173-192, 2006.
  • 12
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • E. B. L. Smith and M. Demetsky, "Traffic flow forecasting: Comparison of modeling approaches," Journal of Transportation Engineering, vol. 123, no. 4, pp. 261-266, 1997.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, E.B.L.1    Demetsky, M.2
  • 16
    • 37449016635 scopus 로고    scopus 로고
    • Chaotic Time Series Model of Real-time Prediction of Traffic Flow
    • L. Zang, L. Jia, L. Yang, T. Liu, "Chaotic Time Series Model of Real-time Prediction of Traffic Flow," China Journal of Highway and Transport, vol. 20(6), 95-99, 2007.
    • (2007) China Journal of Highway and Transport , vol.20 , Issue.6 , pp. 95-99
    • Zang, L.1    Jia, L.2    Yang, L.3    Liu, T.4
  • 17
    • 0036290849 scopus 로고    scopus 로고
    • California's performance measurement system: Improving freeway efficiency through transportation intelligence
    • P. Varaiya, "California's performance measurement system: Improving freeway efficiency through transportation intelligence," TR News, 2002.
    • (2002) TR News
    • Varaiya, P.1
  • 20
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out Bounds for Support Vector Regression Model Selection
    • M. Chang, C. Lin, "Leave-one-out Bounds for Support Vector Regression Model Selection," Neural Computation, vol. 17, pp. 1188-1222, 2005.
    • (2005) Neural Computation , vol.17 , pp. 1188-1222
    • Chang, M.1    Lin, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.