-
2
-
-
0347486142
-
The theory of multiresolution analysis frames and applications to filter banks
-
Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5(4), 389-427 (1998)"
-
(1998)
Appl. Comput. Harmon. Anal
, vol.5
, Issue.4
, pp. 389-427
-
-
Benedetto, J.J.1
Li, S.2
-
3
-
-
0033676849
-
The fractional spline wavelet transform: Definition and implementation
-
Istanbul, Turkey, 5-9 June
-
Blu. T., Unser, M.: The fractional spline wavelet transform: definition and implementation. In: Proceedings of the Twenty-Fifth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2000), pp. 512-515. Istanbul, Turkey, 5-9 June 2000
-
(2000)
Proceedings of the Twenty-Fifth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2000)
, pp. 512-515
-
-
Blu, T.1
Unser, M.2
-
4
-
-
60749091139
-
-
Bownik. M., Speegle, D.: The wavelet dimension function for real dilations and dilations admit-ting non-MSF wavelets. In: Chui, C.K. et al. (ed.) Approximation Theory, X. Wavelets, Splines, and Applications, Papers from the 10th International Symposium, St. Louis, Mo, USA, 26-29 March 2001. Innov. Appl. Math., pp. 63-85. Vanderbilt Univ. Press, Nashville, TN (2002)
-
Bownik. M., Speegle, D.: The wavelet dimension function for real dilations and dilations admit-ting non-MSF wavelets. In: Chui, C.K. et al. (ed.) Approximation Theory, X. Wavelets, Splines, and Applications, Papers from the 10th International Symposium, St. Louis, Mo, USA, 26-29 March 2001. Innov. Appl. Math., pp. 63-85. Vanderbilt Univ. Press, Nashville, TN (2002)
-
-
-
-
6
-
-
33646100784
-
Pairs of dual Gabor frame generators with compact support and desired frequency localization
-
Christensen. O.: Pairs of dual Gabor frame generators with compact support and desired frequency localization. Appl. Comput. Harmon. Anal. 20(3), 403-410 (2006)
-
(2006)
Appl. Comput. Harmon. Anal
, vol.20
, Issue.3
, pp. 403-410
-
-
Christensen, O.1
-
7
-
-
0001457343
-
Orthonormal wavelets and tight frames with arbitrary real dilations
-
Chui, C.K., Shi, X.: Orthonormal wavelets and tight frames with arbitrary real dilations. Appl. Comput. Harmon. Anal. 9(3). 243-264 (2000)
-
(2000)
Appl. Comput. Harmon. Anal
, vol.9
, Issue.3
, pp. 243-264
-
-
Chui, C.K.1
Shi, X.2
-
8
-
-
0242601591
-
Compactly supported tight and sibling frames with maximum vanishing moments
-
Chui. C.K., He, W., Stöckier, J.: Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13(3), 224-262 (2002)
-
(2002)
Appl. Comput. Harmon. Anal
, vol.13
, Issue.3
, pp. 224-262
-
-
Chui, C.K.1
He, W.2
Stöckier, J.3
-
9
-
-
0242573570
-
Framelets: MRA-based constructions of wavelet frames
-
Daubechies, I., Han, B., Ron. A., Shen. Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1-46 (2003)
-
(2003)
Appl. Comput. Harmon. Anal
, vol.14
, Issue.1
, pp. 1-46
-
-
Daubechies, I.1
Han, B.2
Ron, A.3
Shen, Z.4
-
12
-
-
0031571549
-
d): The analysis of the analysis operator
-
d): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408-447 (1997)
-
(1997)
J. Funct. Anal
, vol.148
, Issue.2
, pp. 408-447
-
-
Ron, A.1
Shen, Z.2
|