-
1
-
-
0000504312
-
-
0021-8979 10.1063/1.346127.
-
C. A. Chang, J. Appl. Phys. 0021-8979 10.1063/1.346127 68, 4873 (1990).
-
(1990)
J. Appl. Phys.
, vol.68
, pp. 4873
-
-
Chang, C.A.1
-
2
-
-
0037535053
-
-
0036-8075 10.1126/science.277.5323.213.
-
H. A. Dürr, G. Y. Guo, G. van der Laan, G. L. J. Lee, and J. A. C. Bland, Science 0036-8075 10.1126/science.277.5323.213 277, 213 (1997).
-
(1997)
Science
, vol.277
, pp. 213
-
-
Dürr, H.A.1
Guo, G.Y.2
Van Der Laan, G.3
Lee, G.L.J.4
Bland, J.A.C.5
-
3
-
-
0043210616
-
-
0031-9007 10.1103/PhysRevLett.91.017203.
-
H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey, and J. Stohr, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.91.017203 91, 017203 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 017203
-
-
Ohldag, H.1
Scholl, A.2
Nolting, F.3
Arenholz, E.4
Maat, S.5
Young, A.T.6
Carey, M.7
Stohr, J.8
-
4
-
-
4244054562
-
-
0163-1829 10.1103/PhysRevB.59.3722.
-
M. D. Stiles and R. D. McMichael, Phys. Rev. B 0163-1829 10.1103/PhysRevB.59.3722 59, 3722 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 3722
-
-
Stiles, M.D.1
McMichael, R.D.2
-
5
-
-
0035920792
-
-
0031-9007 10.1103/PhysRevLett.87.087202.
-
S. Maat, K. Takano, S. S. P. Parkin, and E. E. Fullerton, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.87.087202 87, 087202 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 087202
-
-
Maat, S.1
Takano, K.2
Parkin, S.S.P.3
Fullerton, E.E.4
-
6
-
-
0033276468
-
-
0031-9015 10.1143/JPSJ.68.3790.
-
Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, and Y. Tokura, J. Phys. Soc. Jpn. 0031-9015 10.1143/JPSJ.68.3790 68, 3790 (1999).
-
(1999)
J. Phys. Soc. Jpn.
, vol.68
, pp. 3790
-
-
Konishi, Y.1
Fang, Z.2
Izumi, M.3
Manako, T.4
Kasai, M.5
Kuwahara, H.6
Kawasaki, M.7
Terakura, K.8
Tokura, Y.9
-
8
-
-
60749134434
-
-
(unpublished).
-
Y. Takamura (unpublished).
-
-
-
Takamura, Y.1
-
10
-
-
0001658968
-
-
0021-8979 10.1063/1.372835.
-
S. Stadler, Y. U. Idzerda, Z. Chen, S. B. Ogale, and T. Venkatesan, J. Appl. Phys. 0021-8979 10.1063/1.372835 87, 6767 (2000).
-
(2000)
J. Appl. Phys.
, vol.87
, pp. 6767
-
-
Stadler, S.1
Idzerda, Y.U.2
Chen, Z.3
Ogale, S.B.4
Venkatesan, T.5
-
11
-
-
34547272734
-
-
0031-9007 10.1103/PhysRevLett.98.197201.
-
E. Arenholz, G. van der Laan, R. V. Chopdekar, and Y. Suzuki, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.98.197201 98, 197201 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 197201
-
-
Arenholz, E.1
Van Der Laan, G.2
Chopdekar, R.V.3
Suzuki, Y.4
-
12
-
-
0000733899
-
-
0163-1829 10.1103/PhysRevB.43.13401.
-
G. van der Laan and B. T. Thole, Phys. Rev. B 0163-1829 10.1103/PhysRevB.43.13401 43, 13401 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 13401
-
-
Van Der Laan, G.1
Thole, B.T.2
-
13
-
-
60749124180
-
-
Theoretical spectra were obtained from the electric-dipole allowed transitions between the ground state 3 dn and the final state 2 p5 3 dn+1 in the presence of an effective exchange field g μB H=-0.1 eV. The ground and final state wave functions were calculated in intermediate coupling using Cowan's Hartree-Fock code with relativistic correction. The results were broadened by a Lorentzian line shape increasing from =0.1 to 0.15 eV for the L3 structure and =0.3 to 0.35 eV for the L2 structure to account for the intrinsic linewidth and a Gaussian of =0.2 eV for the instrumental broadening. We used 10Dq=1.6 eV giving a total symmetric ground state A6 1. Covalency was included by reducing the Hartree-Fock values of the 3d-3d Coulomb interaction to 60%, while the Slater integrals for the 2p-3d interaction were scaled to 80%.
-
Theoretical spectra were obtained from the electric-dipole allowed transitions between the ground state 3 dn and the final state 2 p5 3 dn+1 in the presence of an effective exchange field g μB H=-0.1 eV. The ground and final state wave functions were calculated in intermediate coupling using Cowan's Hartree-Fock code with relativistic correction. The results were broadened by a Lorentzian line shape increasing from =0.1 to 0.15 eV for the L3 structure and =0.3 to 0.35 eV for the L2 structure to account for the intrinsic linewidth and a Gaussian of =0.2 eV for the instrumental broadening. We used 10Dq=1.6 eV giving a total symmetric ground state A6 1. Covalency was included by reducing the Hartree-Fock values of the 3d-3d Coulomb interaction to 60%, while the Slater integrals for the 2p-3d interaction were scaled to 80%.
-
-
-
-
14
-
-
4244078060
-
-
0031-9007 10.1103/PhysRevLett.81.4516.
-
T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.81.4516 81, 4516 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4516
-
-
Schulthess, T.C.1
Butler, W.H.2
-
17
-
-
40749117226
-
-
0163-1829 10.1103/PhysRevB.77.064407.
-
G. van der Laan, E. Arenholz, R. V. Chopdekar, and Y. Suzuki, Phys. Rev. B 0163-1829 10.1103/PhysRevB.77.064407 77, 064407 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 064407
-
-
Van Der Laan, G.1
Arenholz, E.2
Chopdekar, R.V.3
Suzuki, Y.4
|