메뉴 건너뛰기




Volumn , Issue , 2008, Pages 170-181

Approximate zero-variance simulation

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE VERSIONS; APPROXIMATE ZEROS; CENTRAL LIMIT THEOREMS; COMPUTATIONAL EFFORTS; CONVERGENCE RATES; EFFICIENCY GAINS; ESTIMATION ERRORS; ESTIMATION PROBLEMS; EXPONENTIAL CONVERGENCES; FASTER CONVERGENCES; MONTE CARLO SIMULATIONS; RARE-EVENT SIMULATIONS; SQUARE ROOTS; VARIANCE REDUCTION TECHNIQUES; ZERO VARIANCES;

EID: 60749118344     PISSN: 08917736     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WSC.2008.4736066     Document Type: Conference Paper
Times cited : (25)

References (40)
  • 1
    • 33744819512 scopus 로고    scopus 로고
    • Ahamed, I V, S. Borkar, and S, Juneja, 2006. Adaptive importance sampling for Markov chains using stochastic approximation. Operations Research 54 (3): 489-504.
    • Ahamed, I" V, S. Borkar, and S, Juneja, 2006. Adaptive importance sampling for Markov chains using stochastic approximation. Operations Research 54 (3): 489-504.
  • 3
    • 0034339278 scopus 로고    scopus 로고
    • Exponential convergence of adaptive importance sampling for Markov chains
    • Baggerly, K., D. Cox, and R. Picard. 2000. Exponential convergence of adaptive importance sampling for Markov chains. Journal of Applied Probability 37 (2): 342-358.
    • (2000) Journal of Applied Probability , vol.37 , Issue.2 , pp. 342-358
    • Baggerly, K.1    Cox, D.2    Picard, R.3
  • 4
    • 11244319435 scopus 로고    scopus 로고
    • Combination of general antithetic transformations and control variables
    • Ben-Ameur, H., P. L'Ecuyer, and C. Lemieux. 2004. Combination of general antithetic transformations and control variables. Mathematics of Operations Research 29 (4): 946-960.
    • (2004) Mathematics of Operations Research , vol.29 , Issue.4 , pp. 946-960
    • Ben-Ameur, H.1    L'Ecuyer, P.2    Lemieux, C.3
  • 5
    • 60749118597 scopus 로고    scopus 로고
    • Blanchet, J and P. W. Glynn. 2007. Efficient rare-event simulation for the maximum of a random walk with heavy-tailed increments. Manuscript.
    • Blanchet, J" and P. W. Glynn. 2007. Efficient rare-event simulation for the maximum of a random walk with heavy-tailed increments. Manuscript.
  • 6
    • 17744374522 scopus 로고    scopus 로고
    • Functionapproximation- based importance sampling for pricing American options
    • Pistacaway, NJ: IEEE Press
    • Bolia, N., S. Juneja, and P. Glasserman. 2004. Functionapproximation- based importance sampling for pricing American options. In Proceedings of the 2004 Winter Simulation Conference, 604-611. Pistacaway, NJ: IEEE Press.
    • (2004) Proceedings of the 2004 Winter Simulation Conference , pp. 604-611
    • Bolia, N.1    Juneja, S.2    Glasserman, P.3
  • 7
    • 0000692542 scopus 로고
    • Exponential convergence for Monte Carlo particle transport?
    • Booth, T. E. 1985. Exponential convergence for Monte Carlo particle transport? Transactions of the American Nuclear Society 50:267-268.
    • (1985) Transactions of the American Nuclear Society , vol.50 , pp. 267-268
    • Booth, T.E.1
  • 8
    • 0023563391 scopus 로고
    • Generalized zero-variance solutions and intelligent random numbers
    • IEEE Press
    • Booth, T. E. 1987. Generalized zero-variance solutions and intelligent random numbers. In Proceedings of the 1987 Winter Simulation Conference, 445-451: IEEE Press.
    • (1987) Proceedings of the 1987 Winter Simulation Conference , pp. 445-451
    • Booth, T.E.1
  • 13
    • 33644763203 scopus 로고    scopus 로고
    • Dick, J., 1. H. Sloan, X. Wang, and H. Wozniakowski. 2006. Good lattice rules in weighted Korobov spaces with general weights. Numerische Mathematik 103:63-97.
    • Dick, J., 1. H. Sloan, X. Wang, and H. Wozniakowski. 2006. Good lattice rules in weighted Korobov spaces with general weights. Numerische Mathematik 103:63-97.
  • 14
    • 22244431981 scopus 로고    scopus 로고
    • Importance sampling, large deviations, and differential games
    • 76:481-508
    • Dupuis, P., and H. Wang. 2004. Importance sampling, large deviations, and differential games. Stochastics and Stochastics Reports 76:481-508.
    • (2004) Stochastics and Stochastics Reports
    • Dupuis, P.1    Wang, H.2
  • 15
    • 0003489634 scopus 로고    scopus 로고
    • Monte Carlo: Concepts, algorithms, and applications
    • New York, NY: Springer-Verlag
    • Fishman, G. S. 1996. Monte Carlo: Concepts, algorithms, and applications. Springer Series in Operations Research. New York, NY: Springer-Verlag.
    • (1996) Springer Series in Operations Research
    • Fishman, G.S.1
  • 17
    • 0000174391 scopus 로고
    • The asymptotic efficiency of simulation estimators
    • Glynn, P. W., and W. Whitt. 1992. The asymptotic efficiency of simulation estimators. Operations Research 40:505-520.
    • (1992) Operations Research , vol.40 , pp. 505-520
    • Glynn, P.W.1    Whitt, W.2
  • 19
    • 0036577053 scopus 로고    scopus 로고
    • Approximating martingales for variance reduction in Markov process simulation
    • Henderson, S. G., and P. W. Glynn. 2002. Approximating martingales for variance reduction in Markov process simulation. Mathematics of Operations Research 27:253-271.
    • (2002) Mathematics of Operations Research , vol.27 , pp. 253-271
    • Henderson, S.G.1    Glynn, P.W.2
  • 20
    • 10244222906 scopus 로고    scopus 로고
    • Adaptive simulation using perfect control variates
    • Henderson, S. G., and B. Simon. 2004. Adaptive simulation using perfect control variates. Journal of Applied Probability 41:859-876.
    • (2004) Journal of Applied Probability , vol.41 , pp. 859-876
    • Henderson, S.G.1    Simon, B.2
  • 21
  • 22
    • 77950483923 scopus 로고    scopus 로고
    • Juneja, S., and P. Shahabuddin. 2006. Rare event simulation techniques: An introduction and recent advances. In Simulation, ed. S. G. Henderson and B. L. Nelson, Handbooks in Operations Research and Management Science, 291-350. Amsterdam, The Netherlands: Elsevier. Chapter 11.
    • Juneja, S., and P. Shahabuddin. 2006. Rare event simulation techniques: An introduction and recent advances. In Simulation, ed. S. G. Henderson and B. L. Nelson, Handbooks in Operations Research and Management Science, 291-350. Amsterdam, The Netherlands: Elsevier. Chapter 11.
  • 23
    • 38549142727 scopus 로고    scopus 로고
    • Adaptive control variates for finite-horizon simulation
    • Kim, S., and S. G. Henderson. 2006. Adaptive control variates for finite-horizon simulation. Mathematics of Operations Research 32:508-527.
    • (2006) Mathematics of Operations Research , vol.32 , pp. 508-527
    • Kim, S.1    Henderson, S.G.2
  • 24
  • 26
    • 0030397758 scopus 로고    scopus 로고
    • Kuruganti, 1., and S. Strickland. 1996. Importance sampling for Markov Chains: computing variance and determining optimal measures. In Proceedings of the 1996 Winter Simulation Conference, 273-280: IEEE Press.
    • Kuruganti, 1., and S. Strickland. 1996. Importance sampling for Markov Chains: computing variance and determining optimal measures. In Proceedings of the 1996 Winter Simulation Conference, 273-280: IEEE Press.
  • 27
    • 60749099365 scopus 로고    scopus 로고
    • Quasi-Monte Carlo methods with applications in finance
    • To appear
    • L'Ecuyer, P. 2008. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics. To appear.
    • (2008) Finance and Stochastics
    • L'Ecuyer, P.1
  • 29
    • 60749107193 scopus 로고    scopus 로고
    • A randomized quasi-Monte Carlo simulation method for Markov chains
    • To appear
    • LΈcuyer, P., C. Lécot, and B. Tuffin. 2008. A randomized quasi-Monte Carlo simulation method for Markov chains. Operations Research. To appear.
    • (2008) Operations Research
    • LΈcuyer, P.1    Lécot, C.2    Tuffin, B.3
  • 30
    • 0033711489 scopus 로고    scopus 로고
    • Variance reduction via lattice rules
    • L'Ecuyer, P., and C. Lemieux. 2000. Variance reduction via lattice rules. Management Science 46 (9): 1214-1235.
    • (2000) Management Science , vol.46 , Issue.9 , pp. 1214-1235
    • L'Ecuyer, P.1    Lemieux, C.2
  • 33
    • 0000709660 scopus 로고    scopus 로고
    • General conditions for bounded relative error in simulations of highly reliable Markovian systems
    • Nakayama, M. K. 1996. General conditions for bounded relative error in simulations of highly reliable Markovian systems. Advances in Applied Probability 28:687-727.
    • (1996) Advances in Applied Probability , vol.28 , pp. 687-727
    • Nakayama, M.K.1
  • 36
    • 0000228665 scopus 로고    scopus 로고
    • The cross-entropy method for combinatorial and continuous optimization
    • Rubinstein, R. Y. 1999. The cross-entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability 2:127-190.
    • (1999) Methodology and Computing in Applied Probability , vol.2 , pp. 127-190
    • Rubinstein, R.Y.1
  • 38
    • 0000895730 scopus 로고
    • Importance sampling for the simulation of highly reliable Markovian systems
    • Shahabuddin, P. 1994. Importance sampling for the simulation of highly reliable Markovian systems. Management Science 40 (3): 333-352.
    • (1994) Management Science , vol.40 , Issue.3 , pp. 333-352
    • Shahabuddin, P.1
  • 40
    • 84975960883 scopus 로고
    • Proof of the antithetic-variates theorem for unbounded functions
    • Wilson, J. R. 1979. Proof of the antithetic-variates theorem for unbounded functions. Math. Proc. Camb. Phil. Soc. 86:477-479.
    • (1979) Math. Proc. Camb. Phil. Soc , vol.86 , pp. 477-479
    • Wilson, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.