-
2
-
-
0000155950
-
The cascade-correlation learning architecture
-
D. S. Touretzky, editor, Morgan Kaufmann
-
S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D. S. Touretzky, editor, Advances in NIPS, volume 2, pages 524-532. Morgan Kaufmann, 1990.
-
(1990)
Advances in NIPS
, vol.2
, pp. 524-532
-
-
Fahlman, S.E.1
Lebiere, C.2
-
4
-
-
47249145227
-
Feature discovery in reinforcement learning using genetic programming
-
Springer-Verlag, Mar
-
S. Girgin and P. Preux. Feature discovery in reinforcement learning using genetic programming. In Proc. of Euro-GP, pages 218-229. Springer-Verlag, Mar. 2008.
-
(2008)
Proc. of Euro-GP
, pp. 218-229
-
-
Girgin, S.1
Preux, P.2
-
5
-
-
34547971381
-
Constructing basis functions from directed graphs for value function approximation
-
NY, USA, ACM
-
J. Johns and S. Mahadevan. Constructing basis functions from directed graphs for value function approximation. In ICML, pages 385-392, NY, USA, 2007. ACM.
-
(2007)
ICML
, pp. 385-392
-
-
Johns, J.1
Mahadevan, S.2
-
6
-
-
33749263205
-
Automatic basis function construction for approximate dynamic programming and reinforcement learning
-
NY, USA, ACM
-
P. W. Keller, S. Mannor, and D. Precup. Automatic basis function construction for approximate dynamic programming and reinforcement learning. In ICML, pages 449-456, NY, USA, 2006. ACM.
-
(2006)
ICML
, pp. 449-456
-
-
Keller, P.W.1
Mannor, S.2
Precup, D.3
-
9
-
-
35748957806
-
Proto-value functions: A laplacian framework for learning representation and control in markov decision processes
-
S. Mahadevan and M. Maggioni. Proto-value functions: A laplacian framework for learning representation and control in markov decision processes. J. of Machine Learning Research, 8:2169-2231, 2007.
-
(2007)
J. of Machine Learning Research
, vol.8
, pp. 2169-2231
-
-
Mahadevan, S.1
Maggioni, M.2
-
10
-
-
17444414191
-
Basis function adaptation in temporal difference reinforcement learning
-
I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, 134:215-238 (24), 2005.
-
(2005)
Annals of Operations Research
, vol.134
, Issue.24
, pp. 215-238
-
-
Menache, I.1
Mannor, S.2
Shimkin, N.3
-
11
-
-
34547982545
-
Analyzing feature generation for value-function approximation
-
NY, USA, ACM
-
R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing feature generation for value-function approximation. In ICML, pages 737-744, NY, USA, 2007. ACM.
-
(2007)
ICML
, pp. 737-744
-
-
Parr, R.1
Painter-Wakefield, C.2
Li, L.3
Littman, M.4
-
12
-
-
0003998452
-
Markov Decision Processes - Discrete Stochastic Dynamic Programming
-
Wiley
-
M. Puterman. Markov Decision Processes - Discrete Stochastic Dynamic Programming. Probability and mathematical statistics. Wiley, 1994.
-
(1994)
Probability and mathematical statistics
-
-
Puterman, M.1
-
14
-
-
1942516829
-
Combining td-learning with cascade-correlation networks
-
T. Fawcett and N. Mishra, editors, AAAI Press
-
F. Rivest and D. Precup. Combining td-learning with cascade-correlation networks. In T. Fawcett and N. Mishra, editors, ICML, pages 632-639. AAAI Press, 2003.
-
(2003)
ICML
, pp. 632-639
-
-
Rivest, F.1
Precup, D.2
|