메뉴 건너뛰기




Volumn , Issue , 2008, Pages 802-807

A weighted distance measure for calculating the similarity of sparsely distributed trajectories

Author keywords

[No Author keywords available]

Indexed keywords

ROBOT LEARNING;

EID: 60649099993     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2008.118     Document Type: Conference Paper
Times cited : (3)

References (15)
  • 1
    • 0000286376 scopus 로고
    • Using dynamic time warping to find patterns in time series
    • D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In KDD Workshop, pages 359-370, 1994.
    • (1994) KDD Workshop , pp. 359-370
    • Berndt, D.1    Clifford, J.2
  • 2
    • 0042412087 scopus 로고    scopus 로고
    • Automotive signal fault diagnostics - part i: Signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection
    • J. Crossman, H. Guo, Y. Murphey, and J. Cardillo. Automotive signal fault diagnostics - part i: signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. Vehicular Technology, IEEE Transactions on, 52 (4): 1063-1075, 2003.
    • (2003) Vehicular Technology, IEEE Transactions on , vol.52 , Issue.4 , pp. 1063-1075
    • Crossman, J.1    Guo, H.2    Murphey, Y.3    Cardillo, J.4
  • 3
    • 33745616562 scopus 로고    scopus 로고
    • A. Fu, E. Keogh, L. Lau, and C. Ratanamahatana. Scaling and time warping in time series querying. In VLDB'05: Proceedings of the 31st international conference on Very large data bases, pages 649-660. VLDB Endowment, 2005.
    • A. Fu, E. Keogh, L. Lau, and C. Ratanamahatana. Scaling and time warping in time series querying. In VLDB'05: Proceedings of the 31st international conference on Very large data bases, pages 649-660. VLDB Endowment, 2005.
  • 4
    • 34548077518 scopus 로고    scopus 로고
    • S. Hirano and S. Tsumoto. Mining similar temporal patterns in long time-series data and its application to medicine. ICDM, 00:219, 2002.
    • S. Hirano and S. Tsumoto. Mining similar temporal patterns in long time-series data and its application to medicine. ICDM, 00:219, 2002.
  • 5
    • 60649089190 scopus 로고    scopus 로고
    • E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The ucr time series classification/clustering homepage
    • E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The ucr time series classification/clustering homepage.
  • 6
    • 38049166259 scopus 로고    scopus 로고
    • Efficient algorithm for calculating similarity between trajectories containing an increasing dimension
    • P. Laurinen, P. Siirtola, and J. Röning. Efficient algorithm for calculating similarity between trajectories containing an increasing dimension. In Artificial Intelligence and Applications, pages 392-399, 2006.
    • (2006) Artificial Intelligence and Applications , pp. 392-399
    • Laurinen, P.1    Siirtola, P.2    Röning, J.3
  • 7
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms
    • J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In DMKD, pages 2-11, 2003.
    • (2003) DMKD , pp. 2-11
    • Lin, J.1    Keogh, E.2    Lonardi, S.3    Chiu, B.4
  • 9
    • 2442567436 scopus 로고    scopus 로고
    • P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM'02), pages 370-377, Maebashi City, Japan.
    • P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM'02), pages 370-377, Maebashi City, Japan.
  • 12
    • 60649112788 scopus 로고    scopus 로고
    • C. A. Ratanamahatana and E. Keogh. Making time-series classification more accurate using learned constraints. In SDM, 2004.
    • C. A. Ratanamahatana and E. Keogh. Making time-series classification more accurate using learned constraints. In SDM, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.