-
1
-
-
0001931577
-
An empirical comparison of voting classification algorithms: Bagging
-
Bauer, E. and Kohavi, R. (1998) An empirical comparison of voting classification algorithms: Bagging, Boosting, and variants, Machine Learning, vv:1-38.
-
(1998)
Boosting, and Variants, Machine Learning
, vol.VV
, pp. 1-38
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
2042445273
-
Reduction of prediction error by bagging projection pursuit regression
-
Borra S., Rocci R., Vichi M., Schader M. eds., Springer Verlag
-
Borra, S. and Di Ciaccio, A. (2001) Reduction of prediction error by bagging projection pursuit regression, in Advances in Classification and Data Analysis, Borra S., Rocci R., Vichi M., Schader M. eds., Springer Verlag.
-
(2001)
Advances in Classification and Data Analysis
-
-
Borra, S.1
Di Ciaccio, A.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996) Bagging predictors, Machine Learning, 26, n.2:123-140.
-
(1996)
Machine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0346786584
-
Arcing classifier, discussion paper
-
Breiman, L. (1998a) Arcing Classifier, discussion paper, Annals of Statistics, 26:801-824.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-824
-
-
Breiman, L.1
-
5
-
-
0003479038
-
-
Technical Report n. 534, Statistics Department, University of California, Berkeley
-
Breiman, L. (1998b) Half and half bagging and hard boundary points, Technical Report n. 534, Statistics Department, University of California, Berkeley.
-
(1998)
Half and Half Bagging and Hard Boundary Points
-
-
Breiman, L.1
-
6
-
-
0003856278
-
-
Technical Report n. 547, Statistics Department, University of California, Berkeley
-
Breiman, L. (1999) Using adaptive bagging to debias regressions, Technical Report n. 547, Statistics Department, University of California, Berkeley.
-
(1999)
Using Adaptive Bagging to Debias Regressions
-
-
Breiman, L.1
-
7
-
-
0001775806
-
On non linear functions of linear combinations
-
Diaconis, P. and Shahshahani, M. (1984) On non linear functions of linear combinations, SIAM, J. Sci. Statist. Comput., 5: 175-191.
-
(1984)
SIAM, J. Sci. Statist. Comput
, vol.5
, pp. 175-191
-
-
Diaconis, P.1
Shahshahani, M.2
-
8
-
-
0031361611
-
Machine learning research: Four current directions
-
Dietterich, T. G. (1997) Machine Learning Research: Four Current Directions, A.I. Magazine, 18 (4): 97-136.
-
(1997)
A.I. Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
14
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freunde, Y. and Schapire, R. (1997) A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55(1):119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freunde, Y.1
Schapire, R.2
-
16
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J.H. (1991) Multivariate adaptive regression splines, The Annals of Statistics, 19:1-141.
-
(1991)
The Annals of Statistics
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
21
-
-
0002311782
-
Boosting methodology for regression problems
-
January 3-6, Florida
-
Ridgeway, G., Madigan, D. and Richardson, T. (1999) Boosting methodology for regression problems, in Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics, January 3-6, Florida.
-
(1999)
Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics
-
-
Ridgeway, G.1
Madigan, D.2
Richardson, T.3
-
22
-
-
0001149381
-
Training methods for adaptive boosting of neural networks for charater recognition
-
Schwenk, H. and Bengio, Y. (1998) Training methods for adaptive boosting of neural networks for charater recognition, in Advances in Neural Information Processing Systems, 10.
-
(1998)
Advances in Neural Information Processing Systems
, pp. 10
-
-
Schwenk, H.1
Bengio, Y.2
|