-
2
-
-
0030190032
-
Technical note: Some properties of splitting criteria
-
BREIMAN, L. (1996). Technical note: some properties of splitting criteria. Machine Learning 24, 41-41.
-
(1996)
Machine Learning
, vol.24
, pp. 41-41
-
-
Breiman, L.1
-
3
-
-
0003802343
-
-
Belmont, CA: Wadsworth
-
BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R.A. & STONE, C.J. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
4
-
-
0036000543
-
Modified classification and regression tree splitting criteria for data with interactions
-
BREMNER, A.P. & TAPLIN, R.H. (2002). Modified classification and regression tree splitting criteria for data with interactions. Aust. N. Z. J. Stat. 44, 169-176.
-
(2002)
Aust. N. Z. J. Stat.
, vol.44
, pp. 169-176
-
-
Bremner, A.P.1
Taplin, R.H.2
-
5
-
-
0036643083
-
Bayesian Treed Models
-
CHIPMAN, H.A., GEORGE, E.I. & MCCULLOCH, R.E. (2002). Bayesian Treed Models. Machine Learning 48, 299-320.
-
(2002)
Machine Learning
, vol.48
, pp. 299-320
-
-
Chipman, H.A.1
George, E.I.2
McCulloch, R.E.3
-
6
-
-
0002589699
-
Recursive partitioning: A versatile method for exploratory data analysis in biostatistics
-
eds I.B. MacNeil & G.J. Umphrey, Dordrecht, Holland: D. Reidel Publishing
-
CIAMPI, A., CHANG, C-H., HOGG, S. & MCKINNEY, S. (1987). Recursive partitioning: a versatile method for exploratory data analysis in biostatistics. In Biostatistics, eds I.B. MacNeil & G.J. Umphrey, pp. 23-50. Dordrecht, Holland: D. Reidel Publishing.
-
(1987)
Biostatistics
, pp. 23-50
-
-
Ciampi, A.1
Chang, C.-H.2
Hogg, S.3
McKinney, S.4
-
7
-
-
41249092227
-
Tree-based models
-
eds J.M. Chambers & T.J. Hastie, Chapter 9, Pacific Grove, CA: Wadsworth & Brooks/Cole
-
CLARK, L.A. & PREGIBON, D. (1992). Tree-based models. In Statistical Models in S, eds J.M. Chambers & T.J. Hastie, Chapter 9, pp. 377-419. Pacific Grove, CA: Wadsworth & Brooks/Cole.
-
(1992)
Statistical Models in S
, pp. 377-419
-
-
Clark, L.A.1
Pregibon, D.2
-
8
-
-
0031361611
-
Machine learning research: Four current directions
-
DIETTERICH, T.G. (1997). Machine learning research: four current directions. AI Magazine 18, 97-136.
-
(1997)
AI Magazine
, vol.18
, pp. 97-136
-
-
Dietterich, T.G.1
-
9
-
-
0036556537
-
Regression trees with unbiased variable selection and interaction detection
-
LOH, W-Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statist. Sinica 12, 361-368.
-
(2002)
Statist. Sinica
, vol.12
, pp. 361-368
-
-
Loh, W.-Y.1
-
10
-
-
34249966833
-
An empirical comparison of pruning methods for decision tree induction
-
MINGERS, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning 3, 319-342.
-
(1989)
Machine Learning
, vol.3
, pp. 319-342
-
-
Mingers, J.1
-
14
-
-
0002947110
-
Rule induction using information theory
-
eds G. Piatetsky-Shapiro & W.J. Frawley, Menlo Park, CA: MIT Press
-
SMYTH, P. & GOODMAN, R.M. (1991). Rule induction using information theory. In Knowledge Discovery in Databases, eds G. Piatetsky-Shapiro & W.J. Frawley, pp. 158-176. Menlo Park, CA: MIT Press.
-
(1991)
Knowledge Discovery in Databases
, pp. 158-176
-
-
Smyth, P.1
Goodman, R.M.2
-
15
-
-
0000687440
-
Block diagrams and splitting criteria for classification trees
-
TAYLOR, P.C. & SILVERMAN, B.W. (1993). Block diagrams and splitting criteria for classification trees. Statist. Comput. 3, 147-161.
-
(1993)
Statist. Comput.
, vol.3
, pp. 147-161
-
-
Taylor, P.C.1
Silverman, B.W.2
|