-
3
-
-
0003939218
-
-
edited by M. Shlesinger G. Zaslavsky, and U. Frisch Springer, Berlin
-
Lévy Flights and Related Topics in Physics, edited by, M. Shlesinger,,, G. Zaslavsky,, and, U. Frisch, (Springer, Berlin, 1995).
-
(1995)
Lévy Flights and Related Topics in Physics
-
-
-
4
-
-
0002641421
-
-
10.1016/S0370-1573(00)00070-3
-
R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000). 10.1016/S0370- 1573(00)00070-3
-
(2000)
Phys. Rep.
, vol.339
, pp. 1
-
-
Metzler, R.1
Klafter, J.2
-
5
-
-
0039530434
-
-
10.1088/0305-4470/31/11/010
-
R. Kutner and Ph. Maass, J. Phys. A 31, 2603 (1998). 10.1088/0305-4470/ 31/11/010
-
(1998)
J. Phys. a
, vol.31
, pp. 2603
-
-
Kutner, R.1
Maass, Ph.2
-
6
-
-
0037013871
-
-
10.1016/S0375-9601(02)00474-7;
-
M. Schulz, Phys. Lett. A 298, 105 (2002) 10.1016/S0375-9601(02)00474-7
-
(2002)
Phys. Lett. a
, vol.298
, pp. 105
-
-
Schulz, M.1
-
7
-
-
0036828708
-
-
10.1016/S0301-0104(02)00556-6
-
M. Schulz and P. Reineker, Chem. Phys. 284, 331 (2002). 10.1016/S0301-0104(02)00556-6
-
(2002)
Chem. Phys.
, vol.284
, pp. 331
-
-
Schulz, M.1
Reineker, P.2
-
8
-
-
0031571946
-
-
10.1209/epl/i1997-00394-5
-
P. Levitz, Europhys. Lett. 39, 593 (1997). 10.1209/epl/i1997-00394-5
-
(1997)
Europhys. Lett.
, vol.39
, pp. 593
-
-
Levitz, P.1
-
13
-
-
60349110427
-
-
The authors of Ref. calculate a lower bound to the mean-square displacement, with the result 〈 x2 〉 ≥ tmin (2,3-α) if the initial position of the particle is randomly chosen along the chain (so superdiffusion for any 0<α<2). If the particle starts at a barrier (which corresponds to the situation we consider in the present work), the result is 〈 x2 〉 ≥ t2-α (so superdiffusion for 0<α<1). Earlier papers gave different results for the mean-square displacement, but a direct comparison is problematic because those papers did not notice the dependence on the starting position.
-
The authors of Ref. calculate a lower bound to the mean-square displacement, with the result 〈 x2 〉 ≥ tmin (2,3-α) if the initial position of the particle is randomly chosen along the chain (so superdiffusion for any 0<α<2). If the particle starts at a barrier (which corresponds to the situation we consider in the present work), the result is 〈 x2 〉 ≥ t2-α (so superdiffusion for 0<α<1). Earlier papers gave different results for the mean-square displacement, but a direct comparison is problematic because those papers did not notice the dependence on the starting position.
-
-
-
-
14
-
-
36349028730
-
-
10.1088/1751-8113/40/47/002
-
D. Boosé and J. M. Luck, J. Phys. A 40, 14045 (2007). 10.1088/1751-8113/40/47/002
-
(2007)
J. Phys. a
, vol.40
, pp. 14045
-
-
Boosé, D.1
Luck, J.M.2
-
15
-
-
0002600517
-
-
edited by M. M. Novak and T. G. Dewey (World Scientific, Singapore
-
A. Davis and A. Marshak, in Fractal Frontiers, edited by, M. M. Novak, and, T. G. Dewey, (World Scientific, Singapore, 1997).
-
(1997)
Fractal Frontiers
-
-
Davis, A.1
Marshak, A.2
-
16
-
-
0002922255
-
-
10.1103/PhysRevE.58.4254
-
H. Larralde, F. Leyvraz, G. Martinez-Mekler, R. Rechtman, and S. Ruffo, Phys. Rev. E 58, 4254 (1998). 10.1103/PhysRevE.58.4254
-
(1998)
Phys. Rev. e
, vol.58
, pp. 4254
-
-
Larralde, H.1
Leyvraz, F.2
Martinez-Mekler, G.3
Rechtman, R.4
Ruffo, S.5
-
17
-
-
0742331525
-
-
10.1103/PhysRevE.64.041108;
-
S. V. Buldyrev, S. Havlin, A. Ya. Kazakov, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, and G. M. Viswanathan, Phys. Rev. E 64, 041108 (2001) 10.1103/PhysRevE.64.041108
-
(2001)
Phys. Rev. e
, vol.64
, pp. 041108
-
-
Buldyrev, S.V.1
Havlin, S.2
Ya. Kazakov, A.3
Da Luz, M.G.E.4
Raposo, E.P.5
Stanley, H.E.6
Viswanathan, G.M.7
-
18
-
-
0035894671
-
-
10.1016/S0378-4371(01)00461-7
-
S. V. Buldyrev, M. Gitterman, S. Havlin, A. Ya. Kazakov, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, and G. M. Viswanathan, Physica A 302, 148 (2001). 10.1016/S0378-4371(01)00461-7
-
(2001)
Physica a
, vol.302
, pp. 148
-
-
Buldyrev, S.V.1
Gitterman, M.2
Havlin, S.3
Ya. Kazakov, A.4
Da Luz, M.G.E.5
Raposo, E.P.6
Stanley, H.E.7
Viswanathan, G.M.8
-
20
-
-
30244453170
-
-
10.1016/0375-9601(92)90814-3
-
K. E. Nagaev, Phys. Lett. A 169, 103 (1992). 10.1016/0375-9601(92)90814-3
-
(1992)
Phys. Lett. a
, vol.169
, pp. 103
-
-
Nagaev, K.E.1
-
22
-
-
60349093811
-
-
We cannot directly take the derivative of Eq. 5 because that would lead (for p≠1) to an undefined product of θ (L-x) and δ (L-x). No such complication arises if we take the derivative of Eq. 7.
-
We cannot directly take the derivative of Eq. 5 because that would lead (for p≠1) to an undefined product of θ (L-x) and δ (L-x). No such complication arises if we take the derivative of Eq. 7.
-
-
-
-
23
-
-
77949362956
-
-
For efficient algorithms to generate random variables with a Lévy stable distribution, see 10.2307/2285309;
-
For efficient algorithms to generate random variables with a Lévy stable distribution, see J. M. Chambers, C. L. Mallows, and B. W. Stuck, J. Am. Stat. Assoc. 71, 340 (1976) 10.2307/2285309
-
(1976)
J. Am. Stat. Assoc.
, vol.71
, pp. 340
-
-
Chambers, J.M.1
Mallows, C.L.2
Stuck, B.W.3
-
24
-
-
0001188670
-
-
10.1103/PhysRevE.49.4677
-
R. N. Mantegna, Phys. Rev. E 49, 4677 (1994). 10.1103/PhysRevE.49.4677
-
(1994)
Phys. Rev. e
, vol.49
, pp. 4677
-
-
Mantegna, R.N.1
-
25
-
-
0035494260
-
-
10.1103/PhysRevB.64.134209
-
S. Russ, J. W. Kantelhardt, A. Bunde, and S. Havlin, Phys. Rev. B 64, 134209 (2001). 10.1103/PhysRevB.64.134209
-
(2001)
Phys. Rev. B
, vol.64
, pp. 134209
-
-
Russ, S.1
Kantelhardt, J.W.2
Bunde, A.3
Havlin, S.4
|