-
1
-
-
36749112076
-
The Painleve property for partial differential equations
-
Weiss J., Tabor M., and Carnevale G. The Painleve property for partial differential equations. J. Math. Phys. 24 (1983) 522-526
-
(1983)
J. Math. Phys.
, vol.24
, pp. 522-526
-
-
Weiss, J.1
Tabor, M.2
Carnevale, G.3
-
2
-
-
24644480595
-
New applications of developed Jacobi elliptic function expansion methods
-
Liu G.T., and Fan T.Y. New applications of developed Jacobi elliptic function expansion methods. Phys. Lett. A 345 (2005) 161-166
-
(2005)
Phys. Lett. A
, vol.345
, pp. 161-166
-
-
Liu, G.T.1
Fan, T.Y.2
-
4
-
-
0442280323
-
Distinct variants of the KdV equation with compact and noncompact structures
-
Wazwaz A.M. Distinct variants of the KdV equation with compact and noncompact structures. Appl. Math. Comput. 150 (2004) 365-377
-
(2004)
Appl. Math. Comput.
, vol.150
, pp. 365-377
-
-
Wazwaz, A.M.1
-
5
-
-
0034606149
-
Extended tanh-function method and its applications to nonlinear equations
-
Fan E.G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277 (2000) 212-218
-
(2000)
Phys. Lett. A
, vol.277
, pp. 212-218
-
-
Fan, E.G.1
-
6
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
He J.H., and Wu X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fract. 30 (2006) 700-708
-
(2006)
Chaos Solitons Fract.
, vol.30
, pp. 700-708
-
-
He, J.H.1
Wu, X.H.2
-
7
-
-
37549033511
-
The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics
-
Wang M., Li X., and Zhang J. The (G′/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372 (2008) 417-423
-
(2008)
Phys. Lett. A
, vol.372
, pp. 417-423
-
-
Wang, M.1
Li, X.2
Zhang, J.3
-
8
-
-
41949137395
-
Application of the (G′/G)-expansion method for nonlinear evolution equations
-
Bekir A. Application of the (G′/G)-expansion method for nonlinear evolution equations. Phys. Lett. A 372 (2008) 3400-3406
-
(2008)
Phys. Lett. A
, vol.372
, pp. 3400-3406
-
-
Bekir, A.1
-
9
-
-
42749091472
-
A generalized (G′/G)-expansion method and its applications
-
Zhang J., Wei X., and Lu Y. A generalized (G′/G)-expansion method and its applications. Phys. Lett. A 372 (2008) 3653-3658
-
(2008)
Phys. Lett. A
, vol.372
, pp. 3653-3658
-
-
Zhang, J.1
Wei, X.2
Lu, Y.3
-
10
-
-
39849101219
-
A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients
-
Zhang S., Tong J.L., and Wang W. A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients. Phys. Lett. A 372 (2008) 2254-2257
-
(2008)
Phys. Lett. A
, vol.372
, pp. 2254-2257
-
-
Zhang, S.1
Tong, J.L.2
Wang, W.3
-
11
-
-
33644938250
-
Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations
-
Wazwaz A.M. Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Phys. Lett. A 352 (2006) 500-504
-
(2006)
Phys. Lett. A
, vol.352
, pp. 500-504
-
-
Wazwaz, A.M.1
-
12
-
-
33947194364
-
New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations
-
Wazwaz A.M. New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations. Appl. Math. Comput. 186 (2007) 130-141
-
(2007)
Appl. Math. Comput.
, vol.186
, pp. 130-141
-
-
Wazwaz, A.M.1
-
14
-
-
0034606149
-
Extended tanh-function method and its applications to nonlinear equations
-
Fan E. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277 (2000) 212-218
-
(2000)
Phys. Lett. A
, vol.277
, pp. 212-218
-
-
Fan, E.1
-
15
-
-
35349019329
-
Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method
-
Molabahrami A., Khani F., and Nezhad S.H. Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method. Phys. Lett. A 370 (2007) 433-436
-
(2007)
Phys. Lett. A
, vol.370
, pp. 433-436
-
-
Molabahrami, A.1
Khani, F.2
Nezhad, S.H.3
-
16
-
-
18144367671
-
An application of the decomposition method for the two-dimensional KdV-Burgers equation
-
Kaya D. An application of the decomposition method for the two-dimensional KdV-Burgers equation. Comput. Math. Appl. 48 (2004) 1659-1665
-
(2004)
Comput. Math. Appl.
, vol.48
, pp. 1659-1665
-
-
Kaya, D.1
-
17
-
-
21344493193
-
Exact solutions to two-dimensional Korteweg-de-Vries-Burgers equation
-
Parkes E.J. Exact solutions to two-dimensional Korteweg-de-Vries-Burgers equation. J. Phys. A: Math. Gen. 27 (1994) L497-L501
-
(1994)
J. Phys. A: Math. Gen.
, vol.27
-
-
Parkes, E.J.1
-
18
-
-
0035905095
-
A new complex line soliton for the two-dimensional KdV-Burgers equation
-
Fan E., Zhang J., and Hon B.Y.C. A new complex line soliton for the two-dimensional KdV-Burgers equation. Phys. Lett. A 29 (2001) 376-380
-
(2001)
Phys. Lett. A
, vol.29
, pp. 376-380
-
-
Fan, E.1
Zhang, J.2
Hon, B.Y.C.3
-
19
-
-
0037463598
-
The first integral method to the two-dimensional Burgers-Korteweg-de-Vries equation
-
Feng Z., and Wang X. The first integral method to the two-dimensional Burgers-Korteweg-de-Vries equation. Phys. Lett. A 308 (2003) 173-178
-
(2003)
Phys. Lett. A
, vol.308
, pp. 173-178
-
-
Feng, Z.1
Wang, X.2
-
20
-
-
21144469068
-
An exact solution to two-dimensional Korteweg-de-Vries-Burgers equation
-
Ma W. An exact solution to two-dimensional Korteweg-de-Vries-Burgers equation. J. Phys. A: Math. Gen. 26 (1993) L17-L20
-
(1993)
J. Phys. A: Math. Gen.
, vol.26
-
-
Ma, W.1
|