-
1
-
-
0017386947
-
Dynamics of a chemostat in which two organisms compete for a common substrate
-
Aris R., and Humphrey A.E. Dynamics of a chemostat in which two organisms compete for a common substrate. Biotechnol. Bioeng. 19 (1977) 1375
-
(1977)
Biotechnol. Bioeng.
, vol.19
, pp. 1375
-
-
Aris, R.1
Humphrey, A.E.2
-
2
-
-
0022012911
-
A mathematical model of the chemostat with a general class of functions describing nutrient uptake
-
Butler G.J., and Wolkowicz G.S.K. A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45 1 (1995) 138
-
(1995)
SIAM J. Appl. Math.
, vol.45
, Issue.1
, pp. 138
-
-
Butler, G.J.1
Wolkowicz, G.S.K.2
-
3
-
-
0022075298
-
A mathematical model of the chemostat with periodic washout rate
-
Butler G.J., Hsu S.B., and Waltman P. A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45 3 (1985) 435
-
(1985)
SIAM J. Appl. Math.
, vol.45
, Issue.3
, pp. 435
-
-
Butler, G.J.1
Hsu, S.B.2
Waltman, P.3
-
4
-
-
0034660051
-
Modeling the competition between floc-forming and filamentous bacteria in activated sludge waste water treatment systems - II. A prototype mathematical model based on kinetic selection and filamentous backbone theory
-
Cenens C., Smets I.Y., and Van Impe J.F. Modeling the competition between floc-forming and filamentous bacteria in activated sludge waste water treatment systems - II. A prototype mathematical model based on kinetic selection and filamentous backbone theory. Water Res. 34 9 (2000) 2535
-
(2000)
Water Res.
, vol.34
, Issue.9
, pp. 2535
-
-
Cenens, C.1
Smets, I.Y.2
Van Impe, J.F.3
-
5
-
-
0030266364
-
Kinetics scheme reduction, attractive invariant manifold and slow/fast dynamical systems
-
Duchêne P., and Rouchon P. Kinetics scheme reduction, attractive invariant manifold and slow/fast dynamical systems. Chem. Eng. Sci. 51 (1996) 4661
-
(1996)
Chem. Eng. Sci.
, vol.51
, pp. 4661
-
-
Duchêne, P.1
Rouchon, P.2
-
6
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equations 31 (1979) 53
-
(1979)
J. Differ. Equations
, vol.31
, pp. 53
-
-
Fenichel, N.1
-
7
-
-
52049110860
-
How flocculation can explain coexistence in the chemostat
-
Haegeman B., and Rapaport A. How flocculation can explain coexistence in the chemostat. J. Biol. Dyn. 2 1 (2008) 1
-
(2008)
J. Biol. Dyn.
, vol.2
, Issue.1
, pp. 1
-
-
Haegeman, B.1
Rapaport, A.2
-
8
-
-
0018868854
-
Single nutrient microbial competition: agreement between experimental and theoretical forecast outcomes
-
Hansen S., and Hubbell S. Single nutrient microbial competition: agreement between experimental and theoretical forecast outcomes. Science 207 (1980) 1491
-
(1980)
Science
, vol.207
, pp. 1491
-
-
Hansen, S.1
Hubbell, S.2
-
9
-
-
34248971890
-
The competition exclusion principle
-
Hardin G. The competition exclusion principle. Science 131 (1960) 1292
-
(1960)
Science
, vol.131
, pp. 1292
-
-
Hardin, G.1
-
10
-
-
0000875842
-
A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms
-
Hsu S., Hubbell S., and Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32 (1977) 366
-
(1977)
SIAM J. Appl. Math.
, vol.32
, pp. 366
-
-
Hsu, S.1
Hubbell, S.2
Waltman, P.3
-
13
-
-
12944273418
-
Persistence in ecological models of competition for a single resource
-
Lobry C., Mazenc F., and Rapaport A. Persistence in ecological models of competition for a single resource. C. R. Acad. Sci. Paris Ser. I 340 (2004) 199
-
(2004)
C. R. Acad. Sci. Paris Ser. I
, vol.340
, pp. 199
-
-
Lobry, C.1
Mazenc, F.2
Rapaport, A.3
-
14
-
-
30344469344
-
A new hypothesis to explain the coexistence of n species in the presence of a single resource
-
Lobry C., and Harmand J. A new hypothesis to explain the coexistence of n species in the presence of a single resource. C. R. Biol. 329 (2006) 40
-
(2006)
C. R. Biol.
, vol.329
, pp. 40
-
-
Lobry, C.1
Harmand, J.2
-
15
-
-
31344441158
-
Sur un modèle densité-dépendant de compétition pour une resource
-
Lobry C., Mazenc F., and Rapaport A. Sur un modèle densité-dépendant de compétition pour une resource. C. R. Biol. 329 (2006) 63
-
(2006)
C. R. Biol.
, vol.329
, pp. 63
-
-
Lobry, C.1
Mazenc, F.2
Rapaport, A.3
-
16
-
-
60449089205
-
Long run coexistence in the chemostat with multiple species
-
to appear
-
A. Rapaport, D. Dochain, J. Harmand, Long run coexistence in the chemostat with multiple species, J. Theor. Biol., to appear.
-
J. Theor. Biol
-
-
Rapaport, A.1
Dochain, D.2
Harmand, J.3
-
18
-
-
0000513747
-
Competitive coexistence in an oscillating chemostat
-
Smith H.L. Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 40 3 (1981) 498
-
(1981)
SIAM J. Appl. Math.
, vol.40
, Issue.3
, pp. 498
-
-
Smith, H.L.1
-
19
-
-
0013693981
-
The theory of the chemostat. Dynamics of microbial competition
-
Cambridge University
-
Smith H.L., and Waltman P. The theory of the chemostat. Dynamics of microbial competition. Cambridge Studies in Mathematical Biology vol. 13 (1995), Cambridge University
-
(1995)
Cambridge Studies in Mathematical Biology
, vol.13
-
-
Smith, H.L.1
Waltman, P.2
-
20
-
-
0018500981
-
A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor
-
Stephanopoulos G., Aris R., and Frederickson A.G. A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor. Math. Biosci. 45 (1979) 99
-
(1979)
Math. Biosci.
, vol.45
, pp. 99
-
-
Stephanopoulos, G.1
Aris, R.2
Frederickson, A.G.3
-
21
-
-
0000883166
-
Effect of inhomogeneities on the coexistence of competing microbial populations
-
Stephanopoulos G., and Fredrickson A.G. Effect of inhomogeneities on the coexistence of competing microbial populations. Biotechnol. Bioeng. 21 (1979) 1491
-
(1979)
Biotechnol. Bioeng.
, vol.21
, pp. 1491
-
-
Stephanopoulos, G.1
Fredrickson, A.G.2
-
22
-
-
0000559545
-
Systems of differential equations containing a small parameter multiplying the derivative
-
Tikhonov A.N. Systems of differential equations containing a small parameter multiplying the derivative. Math. Sb. 31 (1952) 575
-
(1952)
Math. Sb.
, vol.31
, pp. 575
-
-
Tikhonov, A.N.1
|