-
1
-
-
0041629209
-
-
0031-9007 10.1103/PhysRevLett.82.513.
-
A. Alessandrello, J. W. Beeman, C. Brofferio, O. Cremonesi, E. Fiorini, A. Giuliani, E. E. Haller, A. Monfardini, A. Nucciotti, M. Pavan, G. Pessina, E. Previtali, and L. Zanotti, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.82. 513 82, 513 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 513
-
-
Alessandrello, A.1
Beeman, J.W.2
Brofferio, C.3
Cremonesi, O.4
Fiorini, E.5
Giuliani, A.6
Haller, E.E.7
Monfardini, A.8
Nucciotti, A.9
Pavan, M.10
Pessina, G.11
Previtali, E.12
Zanotti, L.13
-
2
-
-
4544240612
-
-
0957-4484 10.1088/0957-4484/15/9/010.
-
X. Y. Zhang and J. Y. Dai, Nanotechnology 0957-4484 10.1088/0957-4484/15/ 9/010 15, 1166 (2004).
-
(2004)
Nanotechnology
, vol.15
, pp. 1166
-
-
Zhang, X.Y.1
Dai, J.Y.2
-
3
-
-
25444481817
-
-
0002-7820
-
S. Ishii, E. S. Sadki, S. Ooi, Y. Ochiai, and K. Hirata, Physica C 426, 268 (2005). 0002-7820
-
(2005)
Physica C
, vol.426
, pp. 268
-
-
Ishii, S.1
Sadki, E.S.2
Ooi, S.3
Ochiai, Y.4
Hirata, K.5
-
4
-
-
0033097638
-
-
0884-2914 10.1557/JMR.1999.0091.
-
S. Dubois, A. Michel, J. P. Eymery, J. L. Duvail, and L. Piraux, J. Mater. Res. 0884-2914 10.1557/JMR.1999.0091 14, 665 (1999).
-
(1999)
J. Mater. Res.
, vol.14
, pp. 665
-
-
Dubois, S.1
Michel, A.2
Eymery, J.P.3
Duvail, J.L.4
Piraux, L.5
-
6
-
-
33745777388
-
-
1530-6984 10.1021/nl0602387.
-
L. Jankovič, D. Gournis, P. N. Trikalitis, I. Arfaoui, T. Cren, P. Rudolf, M. -H. Sage, T. T. M. Palstra, B. Kooi, J. De Hosson, M. A. Karakassides, K. Dimos, A. Moukarika, and T. Bakas, Nano Lett. 1530-6984 10.1021/nl0602387 6, 1131 (2006).
-
(2006)
Nano Lett.
, vol.6
, pp. 1131
-
-
Jankovič, L.1
Gournis, D.2
Trikalitis, P.N.3
Arfaoui, I.4
Cren, T.5
Rudolf, P.6
Sage, M.-H.7
Palstra, T.T.M.8
Kooi, B.9
De Hosson, J.10
Karakassides, M.A.11
Dimos, K.12
Moukarika, A.13
Bakas, T.14
-
7
-
-
59849105754
-
-
1530-6984 10.1021/nl080850t.
-
N. Tombros, L. Buit, I. Arfaoui, T. Tsoufis, D. Gournis, P. N. Trikalitis, S. Jan van der Molen, P. Rudolf, and B. J. van Wees, Nano Lett. 1530-6984 10.1021/nl080850t 8, 3060 (2008).
-
(2008)
Nano Lett.
, vol.8
, pp. 3060
-
-
Tombros, N.1
Buit, L.2
Arfaoui, I.3
Tsoufis, T.4
Gournis, D.5
Trikalitis, P.N.6
Jan Van Der Molen, S.7
Rudolf, P.8
Van Wees, B.J.9
-
8
-
-
45749084140
-
-
0002-7820
-
U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, ACS Nano 2, 1015 (2008). 0002-7820
-
(2008)
ACS Nano
, vol.2
, pp. 1015
-
-
Gautam, U.K.1
Fang, X.2
Bando, Y.3
Zhan, J.4
Golberg, D.5
-
9
-
-
59849109136
-
-
JCPDS Card No. 79-2204.
-
JCPDS Card No. 79-2204.
-
-
-
-
10
-
-
59849090944
-
-
JCPDS Card No. 85-1409.
-
JCPDS Card No. 85-1409.
-
-
-
-
11
-
-
0003669547
-
-
2nd ed., edited by H. L. Anderson (AIP, New York),.
-
A Physicist's Desk Reference, 2nd ed., edited by, H. L. Anderson, (AIP, New York, 1989), p. 117.
-
(1989)
A Physicist's Desk Reference
, pp. 117
-
-
-
12
-
-
0043283907
-
-
0003-6951 10.1063/1.1601692.
-
M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu, P. Schiffer, T. E. Mallouk, and M. H. W. Chan, Appl. Phys. Lett. 0003-6951 10.1063/1.1601692 83, 1620 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 1620
-
-
Tian, M.1
Wang, J.2
Snyder, J.3
Kurtz, J.4
Liu, Y.5
Schiffer, P.6
Mallouk, T.E.7
Chan, M.H.W.8
-
13
-
-
36049053467
-
-
0031-899X 10.1103/PhysRev.164.498, ();, Phys. Rev. B 1, 1054 (1970).
-
J. S. Langer and V. Ambegaokar, Phys. Rev. 0031-899X 10.1103/PhysRev.164. 498 164, 498 (1967); D. E. McCumber and B. I. Halperin, Phys. Rev. B 1, 1054 (1970).
-
(1967)
Phys. Rev.
, vol.164
, pp. 498
-
-
Langer, J.S.1
Ambegaokar, V.2
McCumber, D.E.3
Halperin, B.I.4
-
14
-
-
59849116670
-
-
Springer, Berlin,;, edited by R. D. Parks (Dekker, New York, 1969), Vol.,.
-
R. P. Huebener, Magnetic Flux Structures of Superconductors, Springer, Berlin, 2001,; J. D. Livingston and W. DeSorbo, Superconductivity, edited by, R. D. Parks, (Dekker, New York, 1969), Vol. 2, p. 1235.
-
(2001)
Magnetic Flux Structures of Superconductors, Superconductivity
, vol.2
, pp. 1235
-
-
Huebener, R.P.1
Livingston, J.D.2
Desorbo, W.3
-
15
-
-
29744454090
-
-
0163-1829 10.1103/PhysRevB.72.212508.
-
R. Prozorov, R. W. Giannetta, A. A. Polyanskii, and G. K. Perkins, Phys. Rev. B 0163-1829 10.1103/PhysRevB.72.212508 72, 212508 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 212508
-
-
Prozorov, R.1
Giannetta, R.W.2
Polyanskii, A.A.3
Perkins, G.K.4
-
16
-
-
4243921545
-
-
0031-9007 10.1103/PhysRevLett.16.1196.
-
J. G. Park, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.16.1196 16, 1196 (1966).
-
(1966)
Phys. Rev. Lett.
, vol.16
, pp. 1196
-
-
Park, J.G.1
-
18
-
-
0004255870
-
-
2nd ed., edited by M. Tinkham (McgGaw-Hill, New York).
-
Introduction to Superconductivity, 2nd ed., edited by, M. Tinkham, (McgGaw-Hill, New York, 1996).
-
(1996)
Introduction to Superconductivity
-
-
-
20
-
-
4243682302
-
-
0031-9007 10.1103/PhysRevLett.19.81.
-
K. Fossheim, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.19.81 19, 81 (1967).
-
(1967)
Phys. Rev. Lett.
, vol.19
, pp. 81
-
-
Fossheim, K.1
-
21
-
-
34248546282
-
-
0021-8979 10.1063/1.2711407.
-
F. Y. Wu, C. C. Yang, C. M. Wu, C. W. Wang and W. H. Li, J. Appl. Phys. 0021-8979 10.1063/1.2711407 101, 09G111 (2007).
-
(2007)
J. Appl. Phys.
, vol.101
-
-
Wu, F.Y.1
Yang, C.C.2
Wu, C.M.3
Wang, C.W.4
Li, W.H.5
-
22
-
-
59849102268
-
-
In fact, keeping in mind that the critical magnetic field of the In nanowires is not much different from the bulk value, the penetration depth should not be so large. The relation between the enhanced critical field in thin superconducting cylinders with the effective penetration depth is given by h=8 λe /d, where h is the factor by which the critical field is enhanced in the cylinder, λe is the effective penetration depth, and d is the diameter of the cylinder (for more details see Ref.). This relation predicts an effective penetration depth of 7.4 nm only in this case.
-
In fact, keeping in mind that the critical magnetic field of the In nanowires is not much different from the bulk value, the penetration depth should not be so large. The relation between the enhanced critical field in thin superconducting cylinders with the effective penetration depth is given by h=8 λe /d, where h is the factor by which the critical field is enhanced in the cylinder, λe is the effective penetration depth, and d is the diameter of the cylinder (for more details see Ref.). This relation predicts an effective penetration depth of 7.4 nm only in this case.
-
-
-
-
23
-
-
0001743509
-
-
0038-5646, ();, Sov. Phys. JETP 21, 1330 (1951).
-
V. L. Ginsburg, Sov. Phys. JETP 0038-5646 34, 113 (1958); V. P. Silin, Sov. Phys. JETP 21, 1330 (1951).
-
(1958)
Sov. Phys. JETP
, vol.34
, pp. 113
-
-
Ginsburg, V.L.1
Silin, V.P.2
|