-
2
-
-
33744517917
-
-
10.1063/1.2206121
-
M. Ziese, A. Bollero, I. Panagiotopoulos, and N. Moutis, Appl. Phys. Lett. 88, 212502 (2006). 10.1063/1.2206121
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 212502
-
-
Ziese, M.1
Bollero, A.2
Panagiotopoulos, I.3
Moutis, N.4
-
3
-
-
20844437591
-
-
10.1103/PhysRevLett.93.077204
-
D. J. Huang, C. F. Chang, H.-T. Jeng, G. Y. Guo, H.-J. Lin, W. B. Wu, H. C. Ku, A. Fujimori, Y. Takahashi, and C. T. Chen, Phys. Rev. Lett. 93, 077204 (2004). 10.1103/PhysRevLett.93.077204
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 077204
-
-
Huang, D.J.1
Chang, C.F.2
Jeng, H.-T.3
Guo, G.Y.4
Lin, H.-J.5
Wu, W.B.6
Ku, H.C.7
Fujimori, A.8
Takahashi, Y.9
Chen, C.T.10
-
5
-
-
35949018705
-
-
10.1103/PhysRevB.24.864
-
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981). 10.1103/PhysRevB.24.864
-
(1981)
Phys. Rev. B
, vol.24
, pp. 864
-
-
Wimmer, E.1
Krakauer, H.2
Weinert, M.3
Freeman, A.J.4
-
9
-
-
2942696179
-
-
10.1063/1.1682788
-
Y. X. Chen, C. Chen, W. L. Zhow, Z. J. Wang, J. Tang, D. X. Wang, and J. M. Daughton, J. Appl. Phys. 95, 7282 (2004). 10.1063/1.1682788
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 7282
-
-
Chen, Y.X.1
Chen, C.2
Zhow, W.L.3
Wang, Z.J.4
Tang, J.5
Wang, D.X.6
Daughton, J.M.7
-
10
-
-
0027591009
-
-
10.1016/0304-8853(93)90021-S
-
S. D. Berry, D. M. Lind, G. Chern, and H. Mathias, J. Magn. Magn. Mater. 123, 126 (1993). 10.1016/0304-8853(93)90021-S
-
(1993)
J. Magn. Magn. Mater.
, vol.123
, pp. 126
-
-
Berry, S.D.1
Lind, D.M.2
Chern, G.3
Mathias, H.4
-
11
-
-
0011065762
-
-
10.1063/1.350000
-
D. M. Lind, S. D. Berry, G. Chern, H. Mathias, and L. R. Testardi, J. Appl. Phys. 70, 6218 (1991). 10.1063/1.350000
-
(1991)
J. Appl. Phys.
, vol.70
, pp. 6218
-
-
Lind, D.M.1
Berry, S.D.2
Chern, G.3
Mathias, H.4
Testardi, L.R.5
-
13
-
-
34547600897
-
-
10.1116/1.2757185
-
G. E. Sterbinsky, J. Cheng, P. T. Chiu, B. W. Wessels, and D. J. Keavney, J. Vac. Sci. Technol. B 25, 1389 (2007). 10.1116/1.2757185
-
(2007)
J. Vac. Sci. Technol. B
, vol.25
, pp. 1389
-
-
Sterbinsky, G.E.1
Cheng, J.2
Chiu, P.T.3
Wessels, B.W.4
Keavney, D.J.5
-
14
-
-
39349114953
-
-
10.1063/1.2844858
-
H. F. Tian, T. L. Qu, L. B. Luo, J. J. Yang, S. M. Guo, H. Y. Zhang, Y. G. Zhao, and J. Q. Li, Appl. Phys. Lett. 92, 063507 (2008). 10.1063/1.2844858
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 063507
-
-
Tian, H.F.1
Qu, T.L.2
Luo, L.B.3
Yang, J.J.4
Guo, S.M.5
Zhang, H.Y.6
Zhao, Y.G.7
Li, J.Q.8
-
15
-
-
0036496832
-
-
10.1103/PhysRevB.65.094429
-
H.-T. Jeng and G. Y. Guo, Phys. Rev. B 65, 094429 (2002). 10.1103/PhysRevB.65.094429
-
(2002)
Phys. Rev. B
, vol.65
, pp. 094429
-
-
Jeng, H.-T.1
Guo, G.Y.2
-
17
-
-
59749086290
-
-
For the calculation of spin-polarization for carriers, we used the absolute value of [DOS (up-spin) -DOS (down-spin)] / [DOS (up-spin) +DOS (down-spin)] at EF.
-
For the calculation of spin-polarization for carriers, we used the absolute value of [DOS (up-spin) -DOS (down-spin)] / [DOS (up-spin) +DOS (down-spin)] at EF.
-
-
-
-
18
-
-
0348120415
-
-
10.1088/0022-3719/4/14/022
-
L. Hedin and B. Lundqvist, J. Phys. C 4, 2064 (1971). 10.1088/0022-3719/4/14/022
-
(1971)
J. Phys. C
, vol.4
, pp. 2064
-
-
Hedin, L.1
Lundqvist, B.2
-
19
-
-
59749086154
-
-
We compared the results using the superlattice with a half unit cell of Fe3 O4 to the one unit cell, and obtained the same results of a ferrimagnetic metallic ground state and the same magnetic moments in both cases.
-
We compared the results using the superlattice with a half unit cell of Fe3 O4 to the one unit cell, and obtained the same results of a ferrimagnetic metallic ground state and the same magnetic moments in both cases.
-
-
-
-
20
-
-
59749093208
-
-
One and a half unit cells of BaTiO3 used in the superlattice are too thin to see the ferroelectric displacement of Ti ions, when it is in contact with the metal (Refs.). It is, however, enough to see the effects of charge imbalance, strain, and oxygen vacancies because they are independent of the thickness of the BaTiO3 slab in the superlattice.
-
One and a half unit cells of BaTiO3 used in the superlattice are too thin to see the ferroelectric displacement of Ti ions, when it is in contact with the metal (Refs.). It is, however, enough to see the effects of charge imbalance, strain, and oxygen vacancies because they are independent of the thickness of the BaTiO3 slab in the superlattice.
-
-
-
-
21
-
-
59749085722
-
-
When the interface configurations are considered in the [001] direction, the Fe2 O4 / TiO2 interface shows a much better match between the transition-metal cations (Fe and Ti ions) and the oxygen anions than does the Fe2 O4 /BaO interface.
-
When the interface configurations are considered in the [001] direction, the Fe2 O4 / TiO2 interface shows a much better match between the transition-metal cations (Fe and Ti ions) and the oxygen anions than does the Fe2 O4 /BaO interface.
-
-
-
-
25
-
-
0034229229
-
-
10.1021/jp000114x
-
N. A. Hill, J. Phys. Chem. B 104, 6694 (2000). 10.1021/jp000114x
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 6694
-
-
Hill, N.A.1
-
29
-
-
29744469970
-
-
10.1103/PhysRevB.72.214121
-
L. Kim, J. Kim, U. V. Waghmare, D. Jung, and J. Lee, Phys. Rev. B 72, 214121 (2005). 10.1103/PhysRevB.72.214121
-
(2005)
Phys. Rev. B
, vol.72
, pp. 214121
-
-
Kim, L.1
Kim, J.2
Waghmare, U.V.3
Jung, D.4
Lee, J.5
-
31
-
-
59749087926
-
-
In the supercell used in this work, the atom types Fe(I), Fe(II), Fe(III), and Fe(IV) have 2, 4, 1, and 1 Fe atoms, respectively.
-
In the supercell used in this work, the atom types Fe(I), Fe(II), Fe(III), and Fe(IV) have 2, 4, 1, and 1 Fe atoms, respectively.
-
-
-
-
34
-
-
0033895085
-
-
10.1016/S0039-6028(99)01182-6
-
B. Stanka, W. Hebenstreit, U. Diebold, and S. A. Chambers, Surf. Sci. 448, 49 (2000). 10.1016/S0039-6028(99)01182-6
-
(2000)
Surf. Sci.
, vol.448
, pp. 49
-
-
Stanka, B.1
Hebenstreit, W.2
Diebold, U.3
Chambers, S.A.4
|