메뉴 건너뛰기




Volumn 45, Issue 1, 2009, Pages 104-110

Genetic algorithm based optimization for multi-physical properties of HSLA steel through hybridization of neural network and desirability function

Author keywords

Composite desirability; Desirability function; Genetic algorithm; High strength low alloy steel; Neural network; Strengthening mechanism

Indexed keywords

ALGORITHMS; ALLOYS; CARBON FIBER REINFORCED PLASTICS; FEEDFORWARD NEURAL NETWORKS; FUNCTIONS; GALLIUM ALLOYS; GENETIC ALGORITHMS; MECHANICAL PROPERTIES; MECHANISMS; METALLURGY; OPTIMIZATION; PROBABILITY DENSITY FUNCTION; STEEL; STEEL METALLURGY; STRENGTH OF MATERIALS; STRENGTHENING (METAL); TENSILE STRENGTH; YIELD STRESS;

EID: 59749086490     PISSN: 09270256     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.commatsci.2008.03.050     Document Type: Article
Times cited : (39)

References (24)
  • 8
    • 59749103275 scopus 로고    scopus 로고
    • Effect of Copper and Microalloying (Ti, B) Addition on Tensile Properties of HSLA Steels Predicted by ANN Technique, accepted in Ironmaking and Steelmaking
    • in press
    • S.K. Ghosh, S. Ganguly, P.P. Chattopadhyay, S. Datta, Effect of Copper and Microalloying (Ti, B) Addition on Tensile Properties of HSLA Steels Predicted by ANN Technique, accepted in Ironmaking and Steelmaking, in press.
    • Ghosh, S.K.1    Ganguly, S.2    Chattopadhyay, P.P.3    Datta, S.4
  • 18
    • 59749087594 scopus 로고
    • The use of experimental design and computerized data analysis in Elastomer Development Studies, Division of Rubber Chemistry
    • Paper No. 6, Cincinnati, Ohio, October
    • P.E. Gatza, R.C. McMillan, The use of experimental design and computerized data analysis in Elastomer Development Studies, Division of Rubber Chemistry, American Chemical Society fall meeting, Paper No. 6, Cincinnati, Ohio, October 1972, pp. 3--6.
    • (1972) American Chemical Society fall meeting , pp. 3-6
    • Gatza, P.E.1    McMillan, R.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.