메뉴 건너뛰기




Volumn 14, Issue 2, 2009, Pages 110-117

Towards a systems-based understanding of plant desiccation tolerance

Author keywords

[No Author keywords available]

Indexed keywords

WATER;

EID: 59549092144     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2008.11.007     Document Type: Review
Times cited : (168)

References (77)
  • 1
    • 33744792923 scopus 로고    scopus 로고
    • Constraints of tolerance: why are desiccation-tolerant organisms so small or rare?
    • Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare?. J. Exp. Biol. 209 (2006) 1575-1584
    • (2006) J. Exp. Biol. , vol.209 , pp. 1575-1584
    • Alpert, P.1
  • 2
    • 84889337380 scopus 로고    scopus 로고
    • Mechanisms of desiccation tolerance in angiosperm resurrection plants
    • Jenks A., and Wood A.J. (Eds), CAB International Press
    • Farrant J.M. Mechanisms of desiccation tolerance in angiosperm resurrection plants. In: Jenks A., and Wood A.J. (Eds). Plant Desiccation Tolerance (2007), CAB International Press 51-90
    • (2007) Plant Desiccation Tolerance , pp. 51-90
    • Farrant, J.M.1
  • 3
    • 0034489196 scopus 로고    scopus 로고
    • The evolution of vegetative desiccation tolerance in plants
    • Oliver M.J., et al. The evolution of vegetative desiccation tolerance in plants. Plant Ecol. 151 (2000) 85-100
    • (2000) Plant Ecol. , vol.151 , pp. 85-100
    • Oliver, M.J.1
  • 4
    • 37849036809 scopus 로고    scopus 로고
    • From Avicennia to Ziziania: seed recalcitrance in perspective
    • Berjak P., and Pammenter N.W. From Avicennia to Ziziania: seed recalcitrance in perspective. Ann. Bot. (Lond.) 101 (2008) 213-228
    • (2008) Ann. Bot. (Lond.) , vol.101 , pp. 213-228
    • Berjak, P.1    Pammenter, N.W.2
  • 5
    • 35448946453 scopus 로고    scopus 로고
    • Desiccation-tolerance in bryophytes: a review
    • Proctor M.C.F., et al. Desiccation-tolerance in bryophytes: a review. Bryologist 110 (2007) 595-621
    • (2007) Bryologist , vol.110 , pp. 595-621
    • Proctor, M.C.F.1
  • 6
    • 14544292947 scopus 로고    scopus 로고
    • Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners
    • Kranner I., et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. U. S. A. 8 (2005) 3141-3146
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.8 , pp. 3141-3146
    • Kranner, I.1
  • 7
    • 0001078949 scopus 로고
    • Desiccation tolerant flowering plants in Southern Africa
    • Gaff D.F. Desiccation tolerant flowering plants in Southern Africa. Science 174 (1971) 1033-1034
    • (1971) Science , vol.174 , pp. 1033-1034
    • Gaff, D.F.1
  • 8
    • 33947723290 scopus 로고    scopus 로고
    • An overview of the biology of the desiccation tolerant resurrection plant Myrothamnus flabellifolia
    • Moore J.P., et al. An overview of the biology of the desiccation tolerant resurrection plant Myrothamnus flabellifolia. Ann. Bot. (Lond.) 99 (2007) 211-217
    • (2007) Ann. Bot. (Lond.) , vol.99 , pp. 211-217
    • Moore, J.P.1
  • 9
    • 30744462051 scopus 로고    scopus 로고
    • Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum
    • Bartels D. Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr. Comp. Biol. 45 (2005) 696-701
    • (2005) Integr. Comp. Biol. , vol.45 , pp. 696-701
    • Bartels, D.1
  • 10
    • 0035987372 scopus 로고    scopus 로고
    • Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair
    • Cooper K., and Farrant J.M. Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J. Exp. Bot. 53 (2002) 1805-1813
    • (2002) J. Exp. Bot. , vol.53 , pp. 1805-1813
    • Cooper, K.1    Farrant, J.M.2
  • 11
    • 0036935750 scopus 로고    scopus 로고
    • A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker
    • Mowla S.B., et al. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215 (2002) 716-726
    • (2002) Planta , vol.215 , pp. 716-726
    • Mowla, S.B.1
  • 12
    • 30744434355 scopus 로고    scopus 로고
    • The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues
    • Illing N., et al. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr. Comp. Biol. 45 (2005) 771-787
    • (2005) Integr. Comp. Biol. , vol.45 , pp. 771-787
    • Illing, N.1
  • 13
    • 0242417025 scopus 로고    scopus 로고
    • An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues
    • Van der Willigen C., et al. An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues. Funct. Plant Biol. 30 (2003) 1-10
    • (2003) Funct. Plant Biol. , vol.30 , pp. 1-10
    • Van der Willigen, C.1
  • 14
    • 34347394333 scopus 로고    scopus 로고
    • Desiccation-tolerance specific gene expression in the leaf tissue of the resurrection plant Sporobolus stapfianus
    • Le N.T., et al. Desiccation-tolerance specific gene expression in the leaf tissue of the resurrection plant Sporobolus stapfianus. Funct. Plant Biol. 34 (2007) 589-600
    • (2007) Funct. Plant Biol. , vol.34 , pp. 589-600
    • Le, N.T.1
  • 15
    • 36849095596 scopus 로고    scopus 로고
    • Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration
    • Whittaker A., et al. Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration. J. Exp. Bot. 58 (2007) 3775-3787
    • (2007) J. Exp. Bot. , vol.58 , pp. 3775-3787
    • Whittaker, A.1
  • 16
    • 0042232287 scopus 로고    scopus 로고
    • An investigation into the role of light during desiccation of three angiosperm resurrection plants
    • Farrant J.M., et al. An investigation into the role of light during desiccation of three angiosperm resurrection plants. Plant Cell Environ. 26 (2003) 1275-1286
    • (2003) Plant Cell Environ. , vol.26 , pp. 1275-1286
    • Farrant, J.M.1
  • 17
    • 9644262404 scopus 로고    scopus 로고
    • Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species
    • Vicré M., et al. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant Cell Environ. 27 (2004) 1329-1340
    • (2004) Plant Cell Environ. , vol.27 , pp. 1329-1340
    • Vicré, M.1
  • 18
    • 85047685444 scopus 로고    scopus 로고
    • Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level
    • Bartels D., and Salamini F. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol. 127 (2001) 1346-1353
    • (2001) Plant Physiol. , vol.127 , pp. 1346-1353
    • Bartels, D.1    Salamini, F.2
  • 19
    • 17044405795 scopus 로고    scopus 로고
    • LEA proteins prevent protein aggregation due to water stress
    • Goyal K., et al. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388 (2005) 151-157
    • (2005) Biochem. J. , vol.388 , pp. 151-157
    • Goyal, K.1
  • 20
    • 12744261480 scopus 로고    scopus 로고
    • The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius,34,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation
    • Moore J.P., et al. The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius,34,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochem. J. 385 (2005) 301-308
    • (2005) Biochem. J. , vol.385 , pp. 301-308
    • Moore, J.P.1
  • 21
    • 33745662669 scopus 로고    scopus 로고
    • Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius
    • Moore J.P., et al. Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiol. 141 (2006) 651-662
    • (2006) Plant Physiol. , vol.141 , pp. 651-662
    • Moore, J.P.1
  • 22
    • 34547661801 scopus 로고    scopus 로고
    • Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit
    • Peters S., et al. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J. Exp. Bot. 58 (2007) 1947-1956
    • (2007) J. Exp. Bot. , vol.58 , pp. 1947-1956
    • Peters, S.1
  • 23
    • 58149130359 scopus 로고    scopus 로고
    • Water stress proteins
    • Ribeat J.-M. (Ed), Food Products Press; The Haworth Press
    • Mtwisha L., et al. Water stress proteins. In: Ribeat J.-M. (Ed). Drought Adaptation in Cereals (2006), Food Products Press; The Haworth Press 531-542
    • (2006) Drought Adaptation in Cereals , pp. 531-542
    • Mtwisha, L.1
  • 24
    • 0035984144 scopus 로고    scopus 로고
    • Revival of a resurrection plant correlates with its antioxidant status
    • Kranner I., et al. Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31 (2002) 13-24
    • (2002) Plant J. , vol.31 , pp. 13-24
    • Kranner, I.1
  • 25
    • 30744463035 scopus 로고    scopus 로고
    • A modulating role for antioxidants in desiccation tolerance
    • Kranner I., and Birtic S. A modulating role for antioxidants in desiccation tolerance. Integr. Comp. Biol. 45 (2005) 734-740
    • (2005) Integr. Comp. Biol. , vol.45 , pp. 734-740
    • Kranner, I.1    Birtic, S.2
  • 26
    • 0442307836 scopus 로고    scopus 로고
    • A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantiganeum
    • Jones L., and McQueen-Mason S. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantiganeum. FEBS Lett. 559 (2004) 61-65
    • (2004) FEBS Lett. , vol.559 , pp. 61-65
    • Jones, L.1    McQueen-Mason, S.2
  • 27
    • 51749087919 scopus 로고    scopus 로고
    • Adaptations of higher plant cell walls to water loss: drought versus desiccation
    • Moore J.P., et al. Adaptations of higher plant cell walls to water loss: drought versus desiccation. Physiol. Plant. 134 (2008) 237-245
    • (2008) Physiol. Plant. , vol.134 , pp. 237-245
    • Moore, J.P.1
  • 28
    • 1642532378 scopus 로고    scopus 로고
    • Composition and desiccation-induced alterations in the cell wall of the resurrection plant Craterostigma wilmsii
    • Vicré M., et al. Composition and desiccation-induced alterations in the cell wall of the resurrection plant Craterostigma wilmsii. Physiol. Plant. 120 (2004) 229-239
    • (2004) Physiol. Plant. , vol.120 , pp. 229-239
    • Vicré, M.1
  • 30
    • 33646558973 scopus 로고    scopus 로고
    • An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes
    • Iturriaga G., et al. An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci 170 (2006) 1173-1184
    • (2006) Plant Sci , vol.170 , pp. 1173-1184
    • Iturriaga, G.1
  • 31
    • 30744466639 scopus 로고    scopus 로고
    • Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats?
    • Oliver M.J., et al. Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats?. Integr. Comp. Biol. 45 (2005) 788-799
    • (2005) Integr. Comp. Biol. , vol.45 , pp. 788-799
    • Oliver, M.J.1
  • 32
    • 0242543075 scopus 로고    scopus 로고
    • Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis
    • Collett H., et al. Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J. Exp. Bot. 54 (2003) 2593-2595
    • (2003) J. Exp. Bot. , vol.54 , pp. 2593-2595
    • Collett, H.1
  • 33
    • 0033980712 scopus 로고    scopus 로고
    • Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum
    • Frank W. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12 (2000) 111-123
    • (2000) Plant Cell , vol.12 , pp. 111-123
    • Frank, W.1
  • 34
    • 0030294745 scopus 로고    scopus 로고
    • A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum
    • Iturriaga G., et al. A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 32 (1996) 707-716
    • (1996) Plant Mol. Biol. , vol.32 , pp. 707-716
    • Iturriaga, G.1
  • 35
    • 0035984181 scopus 로고    scopus 로고
    • Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum
    • Deng X., et al. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 49 (2002) 601-610
    • (2002) Plant Mol. Biol. , vol.49 , pp. 601-610
    • Deng, X.1
  • 36
    • 33745728186 scopus 로고    scopus 로고
    • A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses
    • Deng X., et al. A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol. Biol. 61 (2006) 469-489
    • (2006) Plant Mol. Biol. , vol.61 , pp. 469-489
    • Deng, X.1
  • 37
    • 33746682541 scopus 로고    scopus 로고
    • Identification of stress-responsive promoter elements and isolation of corresponding DNA binding proteins for the LEA gene CpC2 promoter
    • Ditzer A., and Bartels D. Identification of stress-responsive promoter elements and isolation of corresponding DNA binding proteins for the LEA gene CpC2 promoter. Plant Mol. Biol. 61 (2006) 643-663
    • (2006) Plant Mol. Biol. , vol.61 , pp. 643-663
    • Ditzer, A.1    Bartels, D.2
  • 38
    • 0036679504 scopus 로고    scopus 로고
    • CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst
    • Hilbricht T., et al. CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst. Plant J. 31 (2002) 293-303
    • (2002) Plant J. , vol.31 , pp. 293-303
    • Hilbricht, T.1
  • 39
    • 2442696801 scopus 로고    scopus 로고
    • Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene
    • Villalobos M.A., et al. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol. 135 (2004) 309-324
    • (2004) Plant Physiol. , vol.135 , pp. 309-324
    • Villalobos, M.A.1
  • 40
    • 34447550259 scopus 로고    scopus 로고
    • The role of small RNAs in abiotic stress
    • Phillips J.R., et al. The role of small RNAs in abiotic stress. FEBS Lett. 581 (2007) 3592-3597
    • (2007) FEBS Lett. , vol.581 , pp. 3592-3597
    • Phillips, J.R.1
  • 41
    • 27844444242 scopus 로고    scopus 로고
    • Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance
    • Smith-Espinoza C.J., et al. Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance. Mol. Genet. Genomics 274 (2005) 364-372
    • (2005) Mol. Genet. Genomics , vol.274 , pp. 364-372
    • Smith-Espinoza, C.J.1
  • 42
    • 48249084959 scopus 로고    scopus 로고
    • Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum
    • Hilbricht T., et al. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol. 179 (2008) 877-887
    • (2008) New Phytol. , vol.179 , pp. 877-887
    • Hilbricht, T.1
  • 43
    • 0029200350 scopus 로고
    • Changes in in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis
    • Kuang J., et al. Changes in in vivo protein complements in drying leaves of the desiccation-tolerant grass Sporobolus stapfianus and the desiccation-sensitive grass Sporobolus pyramidalis. Aust. J. Plant Physiol. 22 (1995) 1027-1034
    • (1995) Aust. J. Plant Physiol. , vol.22 , pp. 1027-1034
    • Kuang, J.1
  • 44
    • 0000433974 scopus 로고
    • Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance
    • Oliver M. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol. 97 (1991) 1501-1511
    • (1991) Plant Physiol. , vol.97 , pp. 1501-1511
    • Oliver, M.1
  • 45
    • 33748489098 scopus 로고    scopus 로고
    • Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation
    • Rohrig H., et al. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ. 29 (2006) 1606-1617
    • (2006) Plant Cell Environ. , vol.29 , pp. 1606-1617
    • Rohrig, H.1
  • 46
    • 33847206119 scopus 로고    scopus 로고
    • Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa
    • Ingle R.A., et al. Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell Environ. 30 (2007) 435-446
    • (2007) Plant Cell Environ. , vol.30 , pp. 435-446
    • Ingle, R.A.1
  • 47
    • 34247325589 scopus 로고    scopus 로고
    • Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration
    • Jiang G., et al. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225 (2007) 1405-1420
    • (2007) Planta , vol.225 , pp. 1405-1420
    • Jiang, G.1
  • 48
    • 9444291268 scopus 로고    scopus 로고
    • The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis
    • Oliver M.J., et al. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5 (2004) 89-108
    • (2004) BMC Genomics , vol.5 , pp. 89-108
    • Oliver, M.J.1
  • 49
    • 0033953245 scopus 로고    scopus 로고
    • Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum
    • Norwood M., et al. Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. J. Exp. Bot. 51 (2000) 159-165
    • (2000) J. Exp. Bot. , vol.51 , pp. 159-165
    • Norwood, M.1
  • 50
    • 0042283957 scopus 로고    scopus 로고
    • A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration
    • Deng X., et al. A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration. Plant Sci. 165 (2003) 851-861
    • (2003) Plant Sci. , vol.165 , pp. 851-861
    • Deng, X.1
  • 51
    • 0028518845 scopus 로고
    • Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum
    • Velasco R., et al. Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 26 (1994) 541-546
    • (1994) Plant Mol. Biol. , vol.26 , pp. 541-546
    • Velasco, R.1
  • 52
    • 0035543898 scopus 로고    scopus 로고
    • Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana
    • Kirch H.H., et al. Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J. 28 (2001) 555-567
    • (2001) Plant J. , vol.28 , pp. 555-567
    • Kirch, H.H.1
  • 53
    • 0036068778 scopus 로고    scopus 로고
    • The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family
    • Chen X., et al. The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family. J. Plant Physiol. 159 (2002) 677-684
    • (2002) J. Plant Physiol. , vol.159 , pp. 677-684
    • Chen, X.1
  • 54
    • 0030512850 scopus 로고    scopus 로고
    • Desiccation tolerance in vegetative plant cells
    • Oliver M.J. Desiccation tolerance in vegetative plant cells. Physiol. Plant. 97 (1996) 779-787
    • (1996) Physiol. Plant. , vol.97 , pp. 779-787
    • Oliver, M.J.1
  • 55
    • 29244475335 scopus 로고    scopus 로고
    • The South African and Namibian populations of resurrection plant Myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition
    • Moore J.P., et al. The South African and Namibian populations of resurrection plant Myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition. J. Chem. Ecol. 31 (2005) 2823-2834
    • (2005) J. Chem. Ecol. , vol.31 , pp. 2823-2834
    • Moore, J.P.1
  • 56
    • 10944269266 scopus 로고    scopus 로고
    • Role of phenolic acids during dehydration and rehydration of Ramonda serbica
    • Sgherri C., et al. Role of phenolic acids during dehydration and rehydration of Ramonda serbica. Physiol. Plant. 122 (2004) 478-485
    • (2004) Physiol. Plant. , vol.122 , pp. 478-485
    • Sgherri, C.1
  • 57
    • 33745586022 scopus 로고    scopus 로고
    • Senescence- and drought-related changes in peroxidase and superoxidase dismutase isoforms in leaves of Ramonda serbica
    • Veljovic-Jovanovic S., et al. Senescence- and drought-related changes in peroxidase and superoxidase dismutase isoforms in leaves of Ramonda serbica. J. Exp. Bot. 57 (2006) 1759-1768
    • (2006) J. Exp. Bot. , vol.57 , pp. 1759-1768
    • Veljovic-Jovanovic, S.1
  • 58
    • 40549141518 scopus 로고    scopus 로고
    • Characterisation of polyphenol oxidase changes induced by desiccation of Ramonda serbica
    • Veljovic-Jovanovic S., et al. Characterisation of polyphenol oxidase changes induced by desiccation of Ramonda serbica. Physiol. Plant. 132 (2008) 407-416
    • (2008) Physiol. Plant. , vol.132 , pp. 407-416
    • Veljovic-Jovanovic, S.1
  • 59
    • 0034931362 scopus 로고    scopus 로고
    • Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa
    • Whittaker A., et al. Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J. Exp. Bot. 52 (2001) 961-969
    • (2001) J. Exp. Bot. , vol.52 , pp. 961-969
    • Whittaker, A.1
  • 60
    • 34250859588 scopus 로고    scopus 로고
    • Desiccation-induced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia
    • Moore J.P., et al. Desiccation-induced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia. Aust. J. Bot. 55 (2007) 482-491
    • (2007) Aust. J. Bot. , vol.55 , pp. 482-491
    • Moore, J.P.1
  • 61
    • 4544240780 scopus 로고    scopus 로고
    • Comparison of sucrose metabolism during the rehydration of desiccation-tolerant and desiccation-sensitive leaf material of Sporobolus stapfianus
    • Whittaker A., et al. Comparison of sucrose metabolism during the rehydration of desiccation-tolerant and desiccation-sensitive leaf material of Sporobolus stapfianus. Physiol. Plant. 122 (2004) 11-24
    • (2004) Physiol. Plant. , vol.122 , pp. 11-24
    • Whittaker, A.1
  • 62
    • 0033822325 scopus 로고    scopus 로고
    • Resurrection plants and the secrets of eternal leaf
    • Scott P. Resurrection plants and the secrets of eternal leaf. Ann. Bot. (Lond.) 85 (2000) 159-166
    • (2000) Ann. Bot. (Lond.) , vol.85 , pp. 159-166
    • Scott, P.1
  • 63
    • 0034747328 scopus 로고    scopus 로고
    • Mechanisms of plant desiccation tolerance
    • Hoekstra F.A., et al. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6 (2001) 431-438
    • (2001) Trends Plant Sci. , vol.6 , pp. 431-438
    • Hoekstra, F.A.1
  • 64
    • 40849094322 scopus 로고    scopus 로고
    • In situ localization of glucose and sucrose in dehydrating leaves of Sporobolus stapfianus
    • Martinelli T. In situ localization of glucose and sucrose in dehydrating leaves of Sporobolus stapfianus. J. Plant Physiol. 165 (2008) 580-587
    • (2008) J. Plant Physiol. , vol.165 , pp. 580-587
    • Martinelli, T.1
  • 65
    • 0027564435 scopus 로고
    • A repeating 11-mer amino acid motif and plant desiccation
    • Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 3 (1993) 363-369
    • (1993) Plant J. , vol.3 , pp. 363-369
    • Dure, L.1
  • 66
    • 0034993383 scopus 로고    scopus 로고
    • Molecular characterization of two alanine-rich LEA genes abundantly expressed in the resurrection plant C. plantagineum in response to osmotic stress and ABA
    • Ditzer A., et al. Molecular characterization of two alanine-rich LEA genes abundantly expressed in the resurrection plant C. plantagineum in response to osmotic stress and ABA. J. Plant Physiol. 158 (2001) 623-633
    • (2001) J. Plant Physiol. , vol.158 , pp. 623-633
    • Ditzer, A.1
  • 67
    • 0742323272 scopus 로고    scopus 로고
    • POPP the question: what do LEA proteins do?
    • Wise M.J., and Tunnacliffe A. POPP the question: what do LEA proteins do?. Trends Plant Sci. 9 (2004) 747-757
    • (2004) Trends Plant Sci. , vol.9 , pp. 747-757
    • Wise, M.J.1    Tunnacliffe, A.2
  • 68
    • 34548460796 scopus 로고    scopus 로고
    • The continuing conundrum of the LEA proteins
    • Tunnacliffe A., and Wise M.J. The continuing conundrum of the LEA proteins. Naturwissenschaften 94 (2007) 791-812
    • (2007) Naturwissenschaften , vol.94 , pp. 791-812
    • Tunnacliffe, A.1    Wise, M.J.2
  • 69
    • 36749051230 scopus 로고    scopus 로고
    • Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function
    • Chakrabortee S., et al. Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 18073-18078
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 18073-18078
    • Chakrabortee, S.1
  • 70
    • 44849110890 scopus 로고    scopus 로고
    • The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs
    • Priteo-Dapena P., et al. The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J. 54 (2008) 1004-1014
    • (2008) Plant J. , vol.54 , pp. 1004-1014
    • Priteo-Dapena, P.1
  • 71
    • 0033428019 scopus 로고    scopus 로고
    • Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study
    • Vicré M., et al. Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study. J. Plant Physiol. 155 (1999) 719-726
    • (1999) J. Plant Physiol. , vol.155 , pp. 719-726
    • Vicré, M.1
  • 72
    • 42249105075 scopus 로고    scopus 로고
    • A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall to water deficit stress
    • Moore J.P., et al. A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall to water deficit stress. Plant Signal. Behav. 3 (2008) 102-104
    • (2008) Plant Signal. Behav. , vol.3 , pp. 102-104
    • Moore, J.P.1
  • 73
    • 21244454490 scopus 로고    scopus 로고
    • Anomolous leaf tensile properties during dehydration may help elucidate mechanisms of desiccation tolerance in Eragrostis nindensis
    • Balsamo R.A., et al. Anomolous leaf tensile properties during dehydration may help elucidate mechanisms of desiccation tolerance in Eragrostis nindensis. Physiol. Plant. 124 (2005) 336-342
    • (2005) Physiol. Plant. , vol.124 , pp. 336-342
    • Balsamo, R.A.1
  • 74
    • 33748864256 scopus 로고    scopus 로고
    • Drought tolerance of selected Eragrostis species correlates with leaf tensile properties
    • Balsamo R.A., et al. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann. Bot. (Lond.) 97 (2006) 985-991
    • (2006) Ann. Bot. (Lond.) , vol.97 , pp. 985-991
    • Balsamo, R.A.1
  • 75
    • 33646575943 scopus 로고    scopus 로고
    • Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants againts lipid peroxidation and oxidative stress
    • Kotchoni S.O., et al. Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants againts lipid peroxidation and oxidative stress. Plant Cell Environ. 29 (2006) 1033-1048
    • (2006) Plant Cell Environ. , vol.29 , pp. 1033-1048
    • Kotchoni, S.O.1
  • 76
    • 35048879448 scopus 로고    scopus 로고
    • XVSAP1 from Xerophyta viscosa improves osmotic-, salinity- and high-temperature-stress tolerance in Arabidopsis
    • Garwe D., et al. XVSAP1 from Xerophyta viscosa improves osmotic-, salinity- and high-temperature-stress tolerance in Arabidopsis. Biotechnol. J. 1 (2006) 1137-1146
    • (2006) Biotechnol. J. , vol.1 , pp. 1137-1146
    • Garwe, D.1
  • 77
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano H. Systems biology: a brief overview. Science 295 (2002) 1662-1664
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.