메뉴 건너뛰기




Volumn 74, Issue 1, 2009, Pages 107-127

On travelling-wave solutions for a moving boundary problem of Hele-Shaw type

Author keywords

Degenerate transport equation; Electrical streamer discharges; Hele Shaw flow; Kinetic undercooling; Moving boundary problem

Indexed keywords

CHANNEL FLOW; DIFFERENTIAL EQUATIONS; KINETIC THEORY; LINEARIZATION; UNDERCOOLING;

EID: 59549087204     PISSN: 02724960     EISSN: 14643634     Source Type: Journal    
DOI: 10.1093/imamat/hxn029     Document Type: Article
Times cited : (4)

References (12)
  • 1
    • 42749100998 scopus 로고    scopus 로고
    • Stability of negative ionization fronts: Regularization by electric screening?
    • ARRAYAS, M. & EBERT, U. (2004) Stability of negative ionization fronts: Regularization by electric screening? Phys. Rev. E, 69 36214.
    • (2004) Phys. Rev. E , vol.69 , pp. 36214
    • ARRAYAS, M.1    EBERT, U.2
  • 2
    • 40849096721 scopus 로고    scopus 로고
    • Convective stabilization of a Laplacian moving boundary problem with kinetic undercooling
    • EBERT, U., MEULENBROEK, M. & SCHÄFER, L. (2007) Convective stabilization of a Laplacian moving boundary problem with kinetic undercooling. SIAM J. Appl. Math., 68, 292-310.
    • (2007) SIAM J. Appl. Math , vol.68 , pp. 292-310
    • EBERT, U.1    MEULENBROEK, M.2    SCHÄFER, L.3
  • 3
    • 0345934093 scopus 로고
    • Singular Ordinary Differential Operators and Pseudodifferential Equations
    • Berlin: Springer
    • ELSCHNER, J. (1985) Singular Ordinary Differential Operators and Pseudodifferential Equations. Lecture Notes in Mathematics, vol. 1128. Berlin: Springer.
    • (1985) Lecture Notes in Mathematics , vol.1128
    • ELSCHNER, J.1
  • 4
    • 33644946082 scopus 로고    scopus 로고
    • On a Hele-Shaw-type domain evolution with convected surface energy density
    • GÜNTHER, M. & PROKERT, G. (2005) On a Hele-Shaw-type domain evolution with convected surface energy density. SIAM J. Math. Anal. 37, 372-410.
    • (2005) SIAM J. Math. Anal , vol.37 , pp. 372-410
    • GÜNTHER, M.1    PROKERT, G.2
  • 6
    • 84971920974 scopus 로고    scopus 로고
    • HOWISON, S. D. (1992) Complex variable methods in Hele-Shaw moving boundary problems. Eur. J. Appl. Math., 3, 209-224.
    • HOWISON, S. D. (1992) Complex variable methods in Hele-Shaw moving boundary problems. Eur. J. Appl. Math., 3, 209-224.
  • 7
    • 84972562902 scopus 로고
    • Locally coercive nonlinear equations, with applications to some periodic solutions
    • KATO, T. (1984) Locally coercive nonlinear equations, with applications to some periodic solutions. Duke Math. J., 51, 923-936.
    • (1984) Duke Math. J , vol.51 , pp. 923-936
    • KATO, T.1
  • 9
    • 28844435875 scopus 로고    scopus 로고
    • Regularization of moving boundaries in a Laplacian field by a mixed Dirichlet-Neumann boundary condition: Exact results
    • MEULENBROEK, B., EBERT, U. & SCHÄFER, L. (2005) Regularization of moving boundaries in a Laplacian field by a mixed Dirichlet-Neumann boundary condition: Exact results. Phys. Rev. Lett., 95, 195004.
    • (2005) Phys. Rev. Lett , vol.95 , pp. 195004
    • MEULENBROEK, B.1    EBERT, U.2    SCHÄFER, L.3
  • 10
    • 0033264395 scopus 로고    scopus 로고
    • Hyperbolic evolution equations for moving boundary problems
    • PROKERT, G. (1999) Hyperbolic evolution equations for moving boundary problems. Eur. J. Appl. Math., 10, 607-622.
    • (1999) Eur. J. Appl. Math , vol.10 , pp. 607-622
    • PROKERT, G.1
  • 11
    • 59549092349 scopus 로고    scopus 로고
    • ROMERO, L. A. (1981) The fingering problem in a Hele-Shaw cell. Ph.D. Thesis, California Institute of Technology, Pasadena.
    • ROMERO, L. A. (1981) The fingering problem in a Hele-Shaw cell. Ph.D. Thesis, California Institute of Technology, Pasadena.
  • 12
    • 59549100303 scopus 로고    scopus 로고
    • WLADIMIROW, W. S. (1972) Gleichungen der mathematischen Physik Berlin: Deutscher Verlag der Wissenschaften.
    • WLADIMIROW, W. S. (1972) Gleichungen der mathematischen Physik Berlin: Deutscher Verlag der Wissenschaften.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.