메뉴 건너뛰기




Volumn 18, Issue 2, 2009, Pages 105-108

Particle swarm optimization for ensembling generation for evidential k-nearest-neighbour classifier

Author keywords

Evidential k NN classifier; Particle swarm optimization; Random subspace

Indexed keywords


EID: 59449105901     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-007-0162-2     Document Type: Article
Times cited : (16)

References (27)
  • 1
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D Opitz R Maclin 1999 Popular ensemble methods: an empirical study J Artif Intell Res 11 169 198
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    MacLin, R.2
  • 3
    • 17144447826 scopus 로고    scopus 로고
    • An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification
    • 4
    • H AltIncay M Demirekler 2000 An information theoretic framework for weight estimation in the combination of probabilistic classifiers for speaker identification Speech Commun 30 4 255 272
    • (2000) Speech Commun , vol.30 , pp. 255-272
    • Altincay, H.1    Demirekler, M.2
  • 5
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • Raedt LD, Flach PA (eds) Proceedings of the 12th conference on machine learning
    • Zenobi G, Cunningham P (2001) Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Raedt LD, Flach PA (eds) Proceedings of the 12th conference on machine learning, Lecture notes in computer science 2167, pp 576-587
    • (2001) Lecture Notes in Computer Science , vol.2167 , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 6
    • 84880832861 scopus 로고    scopus 로고
    • Constructing diverse classifier ensembles using artificial training examples
    • Melville P, Mooney RJ (2003) Constructing diverse classifier ensembles using artificial training examples. In: Proceedings of the IJCAI, pp 505-510
    • (2003) Proceedings of the IJCAI , pp. 505-510
    • Melville, P.1    Mooney, R.J.2
  • 7
    • 24644441048 scopus 로고    scopus 로고
    • Ensembling local learners through multimodal perturbation
    • 4
    • Z Zhou Y Yu 2005 Ensembling local learners through multimodal perturbation IEEE Trans Syst Man Cybern B Cybern 35 4 725 735
    • (2005) IEEE Trans Syst Man Cybern B Cybern , vol.35 , pp. 725-735
    • Zhou, Z.1    Yu, Y.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L Breiman 1996 Bagging predictors Mach Learn 24 123 140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • 8
    • TK Ho 1998 The random subspace method for constructing decision forests IEEE Trans Pattern Anal Mach Intell 20 8 832 844
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 11
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • D Whitley 1994 A genetic algorithm tutorial Stat Comput 4 65 85
    • (1994) Stat Comput , vol.4 , pp. 65-85
    • Whitley, D.1
  • 13
    • 84984302791 scopus 로고
    • Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
    • R Leardi 1994 Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection J Chemom 8 65 79
    • (1994) J Chemom , vol.8 , pp. 65-79
    • Leardi, R.1
  • 14
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large scale feature selection
    • W Siedlecki J Sklansky 1989 A note on genetic algorithms for large scale feature selection Pattern Recognit Lett 10 335 347
    • (1989) Pattern Recognit Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 15
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: A survey
    • 4
    • GP Zhang 2000 Neural networks for classification: a survey IEEE Trans Syst Man Cybern C Appl Rev 30 4 451 462
    • (2000) IEEE Trans Syst Man Cybern C Appl Rev , vol.30 , pp. 451-462
    • Zhang, G.P.1
  • 18
    • 0031674071 scopus 로고    scopus 로고
    • Matching algorithms to problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator
    • Kennedy J, Spears WM (1998) Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE international conference on evolutionary computation, pp 39-43
    • (1998) Proceedings of the IEEE International Conference on Evolutionary Computation , pp. 39-43
    • Kennedy, J.1    Spears, W.M.2
  • 20
    • 59449101431 scopus 로고    scopus 로고
    • Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbatio
    • to appear
    • AltIncay H (2006) Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbatio. Appl Soft Comput (to appear)
    • (2006) Appl Soft Comput
    • Altincay, H.1
  • 21
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • 05
    • T Denoeux 1995 A k-nearest neighbor classification rule based on Dempster-Shafer theory IEEE Trans Syst Man Cybern 25 05 804 813
    • (1995) IEEE Trans Syst Man Cybern , vol.25 , pp. 804-813
    • Denoeux, T.1
  • 22
    • 0032072012 scopus 로고    scopus 로고
    • An evidence-theoretic k-NN rule with parameter optimization
    • 2
    • LM Zouhal T Denoeux 1998 An evidence-theoretic k-NN rule with parameter optimization IEEE Trans Syst Man Cybern C 28 2 263 271
    • (1998) IEEE Trans Syst Man Cybern C , vol.28 , pp. 263-271
    • Zouhal, L.M.1    Denoeux, T.2
  • 23
    • 33746672590 scopus 로고    scopus 로고
    • Genetic algorithms in classifier fusion
    • 4
    • G Gabrys D Ruta 2006 Genetic algorithms in classifier fusion Appl Soft Comput 6 4 337 347
    • (2006) Appl Soft Comput , vol.6 , pp. 337-347
    • Gabrys, G.1    Ruta, D.2
  • 24
    • 33749236614 scopus 로고    scopus 로고
    • Ensemble based on GA wrapper feature selection
    • E Yu S Cho 2006 Ensemble based on GA wrapper feature selection Comput Industr Eng 51 111 116
    • (2006) Comput Industr Eng , vol.51 , pp. 111-116
    • Yu, E.1    Cho, S.2
  • 25
    • 59449085361 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • submitted
    • Nanni L, Lumini A (2006) Particle swarm optimization for prototype reduction. IEEE Trans Circuits Syst (submitted)
    • (2006) IEEE Trans Circuits Syst
    • Nanni, L.1    Lumini, A.2
  • 26
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J Demsar 2006 Statistical comparisons of classifiers over multiple data sets J Mach Learn Res 7 1 30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.