메뉴 건너뛰기




Volumn 29, Issue 4, 2009, Pages 965-985

Telomerase- and Rad52-independent immortalization of budding yeast by an inherited-long-telomere pathway of telomeri repeat amplification

Author keywords

[No Author keywords available]

Indexed keywords

ENDONUCLEASE; MRE11 PROTEIN; PROTEIN RAD1; PROTEIN SUBUNIT; RAD50 PROTEIN; RAD51 PROTEIN; RAD52 PROTEIN; REPLICATION FACTOR C; TELOMERASE; TELOMERE BINDING PROTEIN;

EID: 59449095891     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.00817-08     Document Type: Article
Times cited : (23)

References (74)
  • 1
    • 6944226229 scopus 로고    scopus 로고
    • MRE11/RAD50/NBS1: Complex activities
    • Assenmacher, N., and K. P. Hopfner. 2004. MRE11/RAD50/NBS1: complex activities. Chromosoma 113:157-166.
    • (2004) Chromosoma , vol.113 , pp. 157-166
    • Assenmacher, N.1    Hopfner, K.P.2
  • 2
    • 33745849998 scopus 로고    scopus 로고
    • The structure and function of telomerase reverse transcriptase
    • Autexier, C., and N. F. Lue. 2006. The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75:493-517.
    • (2006) Annu. Rev. Biochem , vol.75 , pp. 493-517
    • Autexier, C.1    Lue, N.F.2
  • 3
    • 3242892765 scopus 로고    scopus 로고
    • DSB repair: The yeast paradigm
    • Aylon, Y., and M. Kupiec. 2004. DSB repair: the yeast paradigm. DNA Rep. 3:797-815.
    • (2004) DNA Rep , vol.3 , pp. 797-815
    • Aylon, Y.1    Kupiec, M.2
  • 5
    • 0041966011 scopus 로고    scopus 로고
    • Bellaoui, M., M. Chang, J. Ou, H. Xu, C. Boone, and G. W. Brown. 2003. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 22:4304-4313.
    • Bellaoui, M., M. Chang, J. Ou, H. Xu, C. Boone, and G. W. Brown. 2003. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 22:4304-4313.
  • 6
    • 0042191693 scopus 로고    scopus 로고
    • ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C
    • Ben-Aroya, S., A. Koren, B. Liefshitz, R. Steinlauf, and M. Kupiec. 2003. ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc. Natl. Acad. Sci. USA 100:9906-9911.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 9906-9911
    • Ben-Aroya, S.1    Koren, A.2    Liefshitz, B.3    Steinlauf, R.4    Kupiec, M.5
  • 7
    • 13844320317 scopus 로고    scopus 로고
    • The Elg1 replication factor C-like complex: A novel guardian of genome stability
    • Ben-Aroya, S., and M. Kupiec. 2005. The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Rep. 4:409-417.
    • (2005) DNA Rep , vol.4 , pp. 409-417
    • Ben-Aroya, S.1    Kupiec, M.2
  • 9
    • 0031664401 scopus 로고    scopus 로고
    • Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11
    • Bressan, D. A., H. A. Olivares, B. E. Nelms, and J. H. J. Petrini. 1998. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150:591-600.
    • (1998) Genetics , vol.150 , pp. 591-600
    • Bressan, D.A.1    Olivares, H.A.2    Nelms, B.E.3    Petrini, J.H.J.4
  • 10
    • 0030697342 scopus 로고    scopus 로고
    • Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines
    • Bryan, T. M., A. Englezou, L. Dalla-Pozza, M. A. Dunham, and R. R. Reddel. 1997. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3:1271-1274.
    • (1997) Nat. Med , vol.3 , pp. 1271-1274
    • Bryan, T.M.1    Englezou, A.2    Dalla-Pozza, L.3    Dunham, M.A.4    Reddel, R.R.5
  • 11
    • 0034805913 scopus 로고    scopus 로고
    • Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae
    • Bucholc, M., Y. Park, and A. J. Lustig. 2001. Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:6559-6573.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 6559-6573
    • Bucholc, M.1    Park, Y.2    Lustig, A.J.3
  • 12
    • 37549072285 scopus 로고    scopus 로고
    • Telomere loops and homologous recombination-dependent telomeric circles in a Kluyveromyces lactis telomere mutant strain
    • Cesare, A. J., C. Groff-Vindman, S. A. Compton, M. J. McEachern, and J. D. Griffith. 2008. Telomere loops and homologous recombination-dependent telomeric circles in a Kluyveromyces lactis telomere mutant strain. Mol. Cell. Biol. 28:20-29.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 20-29
    • Cesare, A.J.1    Groff-Vindman, C.2    Compton, S.A.3    McEachern, M.J.4    Griffith, J.D.5
  • 13
    • 0034047829 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae mre11 (ts) allele confers a separation of DNA repair and telomere maintenance functions
    • Chamankhah, M., T. Fontanie, and W. Xiao. 2000. The Saccharomyces cerevisiae mre11 (ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics 155:569-576.
    • (2000) Genetics , vol.155 , pp. 569-576
    • Chamankhah, M.1    Fontanie, T.2    Xiao, W.3
  • 14
    • 0035131699 scopus 로고    scopus 로고
    • Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events
    • Chen, Q., A. Iijpma, and C. W. Greider. 2001. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 21:1819-1827.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 1819-1827
    • Chen, Q.1    Iijpma, A.2    Greider, C.W.3
  • 15
    • 52049108769 scopus 로고    scopus 로고
    • Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae
    • Coïc, E., T. Feldman, A. S. Landman, and J. E. Haber. 2008. Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae. Genetics 179:199-211.
    • (2008) Genetics , vol.179 , pp. 199-211
    • Coïc, E.1    Feldman, T.2    Landman, A.S.3    Haber, J.E.4
  • 17
    • 0036276388 scopus 로고    scopus 로고
    • The MRE11 complex: At the crossroads of DNA repair and checkpoint signalling
    • D'Amours, D., and S. P. Jackson. 2002. The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3:317-327.
    • (2002) Nat. Rev. Mol. Cell Biol , vol.3 , pp. 317-327
    • D'Amours, D.1    Jackson, S.P.2
  • 18
    • 2542422284 scopus 로고    scopus 로고
    • The Rad52-Rad59 complexinteracts with Rad51 and replication protein A
    • Davis, A. P., and L. S. Symington. 2003. The Rad52-Rad59 complexinteracts with Rad51 and replication protein A. DNA Rep. 2:1127-1134.
    • (2003) DNA Rep , vol.2 , pp. 1127-1134
    • Davis, A.P.1    Symington, L.S.2
  • 19
    • 0033214013 scopus 로고    scopus 로고
    • Est1 and Cdc13 as comediators of telomerase access
    • Evans, S. K., and V. Lundblad. 1999. Est1 and Cdc13 as comediators of telomerase access. Science 286:117-120.
    • (1999) Science , vol.286 , pp. 117-120
    • Evans, S.K.1    Lundblad, V.2
  • 20
    • 34547941973 scopus 로고    scopus 로고
    • The common biology of cancer and ageing
    • Finkel, T., M. Serrano, and M. A. Blasco. 2007. The common biology of cancer and ageing. Nature 448:767-774.
    • (2007) Nature , vol.448 , pp. 767-774
    • Finkel, T.1    Serrano, M.2    Blasco, M.A.3
  • 21
    • 27544471936 scopus 로고    scopus 로고
    • Ku: A multifunctional protein involved in telomere maintenance
    • Fisher, T. S., and V. A. Zakian. 2005. Ku: a multifunctional protein involved in telomere maintenance. DNA Rep. 4:1215-1226.
    • (2005) DNA Rep , vol.4 , pp. 1215-1226
    • Fisher, T.S.1    Zakian, V.A.2
  • 22
    • 0026583875 scopus 로고
    • Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
    • Fishman-Lobell, J., N. Rudin, and J. E. Haber. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292-1303.
    • (1992) Mol. Cell. Biol , vol.12 , pp. 1292-1303
    • Fishman-Lobell, J.1    Rudin, N.2    Haber, J.E.3
  • 24
    • 0032476658 scopus 로고    scopus 로고
    • Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination
    • Furuse, M., Y. Nagase, H. Tsubouchi, K. Murakami-Murofushi, T. Shibata, and K. Ohta. 1998. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17:6412-6425.
    • (1998) EMBO J , vol.17 , pp. 6412-6425
    • Furuse, M.1    Nagase, Y.2    Tsubouchi, H.3    Murakami-Murofushi, K.4    Shibata, T.5    Ohta, K.6
  • 25
    • 0344197749 scopus 로고    scopus 로고
    • Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells
    • Grandin, N., and M. Charbonneau. 2003. Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol. Cell. Biol. 23:9162-9177.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 9162-9177
    • Grandin, N.1    Charbonneau, M.2
  • 26
    • 33847421831 scopus 로고    scopus 로고
    • Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA
    • Grandin, N., and M. Charbonneau. 2007. Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA. Nucleic Acids Res. 35:822-838.
    • (2007) Nucleic Acids Res , vol.35 , pp. 822-838
    • Grandin, N.1    Charbonneau, M.2
  • 27
    • 0033766666 scopus 로고    scopus 로고
    • Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment
    • Grandin, N., C. Damon, and M. Charbonneau. 2000. Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol. Cell. Biol. 20:8397-8408.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 8397-8408
    • Grandin, N.1    Damon, C.2    Charbonneau, M.3
  • 28
    • 0035282781 scopus 로고    scopus 로고
    • Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13
    • Grandin, N., C. Damon, and M. Charbonneau. 2001. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20:1173-1183.
    • (2001) EMBO J , vol.20 , pp. 1173-1183
    • Grandin, N.1    Damon, C.2    Charbonneau, M.3
  • 29
    • 0031029001 scopus 로고    scopus 로고
    • Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13
    • Grandin, N., S. I. Reed, and M. Charbonneau. 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11:512-527.
    • (1997) Genes Dev , vol.11 , pp. 512-527
    • Grandin, N.1    Reed, S.I.2    Charbonneau, M.3
  • 31
    • 0037148281 scopus 로고    scopus 로고
    • Alternative lengthening of telomeres in mammalian cells
    • Henson, J. D., A. A. Neumann, T. R. Yeager, and R. R. Reddel. 2002. Alternative lengthening of telomeres in mammalian cells. Oncogene 21:598-610.
    • (2002) Oncogene , vol.21 , pp. 598-610
    • Henson, J.D.1    Neumann, A.A.2    Yeager, T.R.3    Reddel, R.R.4
  • 32
    • 0037398027 scopus 로고    scopus 로고
    • Rad50/SMC proteins and ABC transporters: Unifying concepts from high-resolution structures
    • Hopfner, K.-P., and J. A. Tainer. 2003. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13:249-255.
    • (2003) Curr. Opin. Struct. Biol , vol.13 , pp. 249-255
    • Hopfner, K.-P.1    Tainer, J.A.2
  • 33
    • 0036606186 scopus 로고    scopus 로고
    • Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
    • Ivessa, A. S., J. Q. Zhou, V. P. Schulz, E. K. Monson, and V. A. Zakian. 2002. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16:1383-1396.
    • (2002) Genes Dev , vol.16 , pp. 1383-1396
    • Ivessa, A.S.1    Zhou, J.Q.2    Schulz, V.P.3    Monson, E.K.4    Zakian, V.A.5
  • 34
    • 24344480452 scopus 로고    scopus 로고
    • A mutation in the STN1 gene triggers an alternative lengthening of telomere-like runaway recombi-national telomere elongation and rapid deletion in yeast
    • Iyer, S., A. D. Chadha, and M. J. McEachern. 2005. A mutation in the STN1 gene triggers an alternative lengthening of telomere-like runaway recombi-national telomere elongation and rapid deletion in yeast. Mol. Cell. Biol. 25:8064-8073.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 8064-8073
    • Iyer, S.1    Chadha, A.D.2    McEachern, M.J.3
  • 35
    • 0141504148 scopus 로고    scopus 로고
    • Kanellis, P., R. Agyei, and D. Durocher. 2003. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13:1583-1595.
    • Kanellis, P., R. Agyei, and D. Durocher. 2003. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13:1583-1595.
  • 36
    • 33645119826 scopus 로고    scopus 로고
    • Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity
    • Krogh, B. O., B. Llorente, A. Lam, and L. S. Symington. 2005. Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity. Genetics 171: 1561-1570.
    • (2005) Genetics , vol.171 , pp. 1561-1570
    • Krogh, B.O.1    Llorente, B.2    Lam, A.3    Symington, L.S.4
  • 37
    • 33745744815 scopus 로고    scopus 로고
    • Telomerase- and capping-independent yeast survivors with alternate telomere states
    • Larrivée, M., and R. W. Wellinger. 2006. Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat. Cell Biol. 8:741-747.
    • (2006) Nat. Cell Biol , vol.8 , pp. 741-747
    • Larrivée, M.1    Wellinger, R.W.2
  • 38
    • 0032959506 scopus 로고    scopus 로고
    • RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase
    • Le, S., J. K. Moore, J. E. Haber, and C. W. Greider. 1999. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152:143-152.
    • (1999) Genetics , vol.152 , pp. 143-152
    • Le, S.1    Moore, J.K.2    Haber, J.E.3    Greider, C.W.4
  • 39
    • 34548401682 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA breaks promotes microhomology-mediated end joining
    • Lee, K., and S. E. Lee. 2007. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA breaks promotes microhomology-mediated end joining. Genetics 176:2003-2014.
    • (2007) Genetics , vol.176 , pp. 2003-2014
    • Lee, K.1    Lee, S.E.2
  • 40
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee, S. E., J. K. Moore, A. Holmes, K. Umezu, R. Kolodner, and J. E. Haber. 1998. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399-109.
    • (1998) Cell , vol.94 , pp. 399-109
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.5    Haber, J.E.6
  • 41
    • 0030455861 scopus 로고    scopus 로고
    • Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes
    • Lendvay, T. S., D. K. Morris, J. Sah, B. Balasubramanian, and V. Lundblad. 1996. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144:1399-1412.
    • (1996) Genetics , vol.144 , pp. 1399-1412
    • Lendvay, T.S.1    Morris, D.K.2    Sah, J.3    Balasubramanian, B.4    Lundblad, V.5
  • 42
    • 33751369521 scopus 로고    scopus 로고
    • Lettier, G., Q. Feng, A. A. de Mayolo, N. Erdeniz, R. J. Reid, M. Lisby, U. H. Mortensen, and R. Rothstein. 2006. The role of DNA double-stand breaks in spontaneous homologous recombination in S. cerevisiae. PloS Genet. 2:1773-1786.
    • Lettier, G., Q. Feng, A. A. de Mayolo, N. Erdeniz, R. J. Reid, M. Lisby, U. H. Mortensen, and R. Rothstein. 2006. The role of DNA double-stand breaks in spontaneous homologous recombination in S. cerevisiae. PloS Genet. 2:1773-1786.
  • 43
    • 2442463320 scopus 로고    scopus 로고
    • Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells
    • Lewis, L. K., F. Storici, S. Van Komen, S. Calero, P. Sung, and M. A. Resnick. 2004. Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics 166:1701-1713.
    • (2004) Genetics , vol.166 , pp. 1701-1713
    • Lewis, L.K.1    Storici, F.2    Van Komen, S.3    Calero, S.4    Sung, P.5    Resnick, M.A.6
  • 44
    • 0029778954 scopus 로고    scopus 로고
    • A novel mechanism for telomere size control in Saccharomyces cerevisiae
    • Li, B., and A. J. Lustig. 1996. A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev. 10:1310-1326.
    • (1996) Genes Dev , vol.10 , pp. 1310-1326
    • Li, B.1    Lustig, A.J.2
  • 45
    • 13844311437 scopus 로고    scopus 로고
    • Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae
    • Lin, C. Y., H. H. Chang, K. J. Wu, S. F. Tseng, C. C. Lin, C. P. Lin, and S. C. Teng. 2005. Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. Eukaryot. Cell 4:327-336.
    • (2005) Eukaryot. Cell , vol.4 , pp. 327-336
    • Lin, C.Y.1    Chang, H.H.2    Wu, K.J.3    Tseng, S.F.4    Lin, C.C.5    Lin, C.P.6    Teng, S.C.7
  • 46
    • 0038054459 scopus 로고    scopus 로고
    • NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase
    • Liti, G., and E. J. Louis. 2003. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell 11:1373-1378.
    • (2003) Mol. Cell , vol.11 , pp. 1373-1378
    • Liti, G.1    Louis, E.J.2
  • 47
    • 0028799517 scopus 로고
    • A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning
    • Louis, E. J., and R. H. Borts. 1995. A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning. Genetics 139: 125-136.
    • (1995) Genetics , vol.139 , pp. 125-136
    • Louis, E.J.1    Borts, R.H.2
  • 49
    • 0024973811 scopus 로고
    • A mutant with a defect in telomere elongation leads to senescence in yeast
    • Lundblad, V., and J. W. Szostak. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633-643.
    • (1989) Cell , vol.57 , pp. 633-643
    • Lundblad, V.1    Szostak, J.W.2
  • 50
    • 0242354121 scopus 로고    scopus 로고
    • Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion
    • Lustig, A. J. 2003. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nat. Rev. Genet. 4:916-923.
    • (2003) Nat. Rev. Genet , vol.4 , pp. 916-923
    • Lustig, A.J.1
  • 51
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard, J.R.,S. Jain,M. Yamaguchi, and J.E. Haber. 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820-824.
    • (2007) Nature , vol.448 , pp. 820-824
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 52
    • 0242468933 scopus 로고    scopus 로고
    • Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
    • Ma, J. L., E. M. Kim, J. E. Haber, and S. E. Lee. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell. Biol. 23:8820-8828.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 8820-8828
    • Ma, J.L.1    Kim, E.M.2    Haber, J.E.3    Lee, S.E.4
  • 53
    • 1942518292 scopus 로고    scopus 로고
    • Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions
    • Makovets, S., I. Herskowitz, and E. H. Blackburn. 2004. Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol. Cell. Biol. 24:4019-4031.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 4019-4031
    • Makovets, S.1    Herskowitz, I.2    Blackburn, E.H.3
  • 54
    • 0036315364 scopus 로고    scopus 로고
    • Multiple pathways promote short-sequence recombination in Saccharomyces cerevisiae
    • Manthey, G. M., and A. M. Bailis. 2002. Multiple pathways promote short-sequence recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 22: 5347-5356.
    • (2002) Mol. Cell. Biol , vol.22 , pp. 5347-5356
    • Manthey, G.M.1    Bailis, A.M.2
  • 55
    • 7544247595 scopus 로고    scopus 로고
    • Telomerase- and recombination-independent immortalization of budding yeast
    • Maringele, L., and D. Lydall. 2004. Telomerase- and recombination-independent immortalization of budding yeast. Genes Dev. 18:2663-2675.
    • (2004) Genes Dev , vol.18 , pp. 2663-2675
    • Maringele, L.1    Lydall, D.2
  • 56
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern, M. J., and J. E. Haber. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75:111-135.
    • (2006) Annu. Rev. Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 57
    • 0029976325 scopus 로고    scopus 로고
    • Cell cycle and genetic requirement of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
    • Moore, J. K., and J. E. Haber. 1996. Cell cycle and genetic requirement of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164-2173.
    • (1996) Mol. Cell. Biol , vol.16 , pp. 2164-2173
    • Moore, J.K.1    Haber, J.E.2
  • 58
    • 0032931844 scopus 로고    scopus 로고
    • The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end-joining or telomere maintenance
    • Moreau, S., J. R. Ferguson, and L. S. Symington. 1999. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end-joining or telomere maintenance. Mol. Cell. Biol. 19:556-566.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 556-566
    • Moreau, S.1    Ferguson, J.R.2    Symington, L.S.3
  • 59
    • 0036832737 scopus 로고    scopus 로고
    • Telomere maintenance and cancer - look, no telomerase
    • Neumann, A. A., and R. R. Reddel. 2002. Telomere maintenance and cancer - look, no telomerase. Nat. Rev. Cancer 2:879-884.
    • (2002) Nat. Rev. Cancer , vol.2 , pp. 879-884
    • Neumann, A.A.1    Reddel, R.R.2
  • 60
    • 0026030088 scopus 로고
    • A unique pathway of double-strand break repair operates in tandemly repeated genes
    • Ozenberger, B. A., and G. S. Roeder. 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11:1222-1231.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 1222-1231
    • Ozenberger, B.A.1    Roeder, G.S.2
  • 61
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Pâques, F., and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349-404.
    • (1999) Microbiol. Mol. Biol. Rev , vol.63 , pp. 349-404
    • Pâques, F.1    Haber, J.E.2
  • 62
    • 38549109627 scopus 로고    scopus 로고
    • Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1
    • Pohl, T. J., and J. A. Nickoloff. 2008. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol. Cell. Biol. 28:897-906.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 897-906
    • Pohl, T.J.1    Nickoloff, J.A.2
  • 63
    • 0013427685 scopus 로고
    • Cloning of yeast recombination repair genes and evidence that several are non-essential genes
    • E. C. Friedberg and B. A. Bridges ed, Alan R. Liss, New York, NY
    • Schild, D., I. L. Calderon, R. Contopoulo, and R. K. Mortimer. 1983. Cloning of yeast recombination repair genes and evidence that several are non-essential genes, p 417-427. In E. C. Friedberg and B. A. Bridges (ed.), Cellular responses to DNA damage. Alan R. Liss, New York, NY.
    • (1983) Cellular responses to DNA damage , pp. 417-427
    • Schild, D.1    Calderon, I.L.2    Contopoulo, R.3    Mortimer, R.K.4
  • 64
    • 0029932547 scopus 로고    scopus 로고
    • Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae
    • Siede, W., G. Nusspaumer, V. Portillo, R. Rodriguez, and E. C. Friedberg. 1996. Cloning and characterization of RAD17, a gene controlling cell cycle responses to DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 24:1669-1675.
    • (1996) Nucleic Acids Res , vol.24 , pp. 1669-1675
    • Siede, W.1    Nusspaumer, G.2    Portillo, V.3    Rodriguez, R.4    Friedberg, E.C.5
  • 65
    • 0027944347 scopus 로고
    • TLC1: Template RNA component of Saccharomyces cerevisiae telomerase
    • Singer, M. S., and D. E. Gottschling. 1994. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404-409.
    • (1994) Science , vol.266 , pp. 404-409
    • Singer, M.S.1    Gottschling, D.E.2
  • 66
    • 1242297066 scopus 로고    scopus 로고
    • ELG1, a regulator of genome stability, has a role in telomere length regulation and in silencing
    • Smolikov, S., Y. Mazor, and A. Krauskopf. 2004. ELG1, a regulator of genome stability, has a role in telomere length regulation and in silencing. Proc. Natl. Acad. Sci. USA 101:1656-1661.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 1656-1661
    • Smolikov, S.1    Mazor, Y.2    Krauskopf, A.3
  • 67
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistastis group genes in homologous recombination and double-strand break repair
    • Symington, L. S. 2002. Role of RAD52 epistastis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630-670.
    • (2002) Microbiol. Mol. Biol. Rev , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 68
    • 0033513079 scopus 로고    scopus 로고
    • Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae
    • Teng, S. C., and V. A. Zakian. 1999. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:8083-8093.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 8083-8093
    • Teng, S.C.1    Zakian, V.A.2
  • 69
    • 0347992014 scopus 로고    scopus 로고
    • The N-terminal domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae
    • Tsukamoto, M., K. Yamashita, T. Miyazaki, M. Shinohara, and A. Shinohara. 2003. The N-terminal domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae. Genetics 165:1703-1715.
    • (2003) Genetics , vol.165 , pp. 1703-1715
    • Tsukamoto, M.1    Yamashita, K.2    Miyazaki, T.3    Shinohara, M.4    Shinohara, A.5
  • 70
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu, K., N. Sugawara, C. Chen, J. E. Haber, and R. D. Kolodner. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148:989-1005.
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 73
    • 0030995534 scopus 로고    scopus 로고
    • A novel Rap1-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae
    • Wotton, D., and D. Shore. 1997. A novel Rap1-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11:748-760.
    • (1997) Genes Dev , vol.11 , pp. 748-760
    • Wotton, D.1    Shore, D.2
  • 74
    • 33745740664 scopus 로고    scopus 로고
    • Linear chromosome maintenance in the absence of essential telomere-capping proteins
    • Zubko, M. J., and D. Lydall. 2006. Linear chromosome maintenance in the absence of essential telomere-capping proteins. Nat. Cell Biol. 8:734-740.
    • (2006) Nat. Cell Biol , vol.8 , pp. 734-740
    • Zubko, M.J.1    Lydall, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.