-
1
-
-
0030522185
-
On the chemical distance for supercritical bernoulli percolation
-
P Antal, A. Pisztora. On the chemical distance for supercritical bernoulli percolation. Ann. Probab. 24 (1996), 1036-1048.
-
(1996)
Ann. Probab
, vol.24
, pp. 1036-1048
-
-
Antal, P.1
Pisztora, A.2
-
2
-
-
4243129698
-
Random walks on supercritical percolation clusters
-
M. T Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004), 3024-3084.
-
(2004)
Ann. Probab
, vol.32
, pp. 3024-3084
-
-
Barlow, M.T.1
-
4
-
-
59249088704
-
Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps
-
M.T. Barlow, R.F. Bass, T. Kumagai. Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. To appear Math. Zeitschrift.
-
To Appear Math. Zeitschrift
-
-
Barlow, M.T.1
Bass, R.F.2
Kumagai, T.3
-
5
-
-
0036638704
-
On Aronsen's upper bounds for heat kernels
-
R.F. Bass. On Aronsen's upper bounds for heat kernels. Bull. London Math. Soc. 34 (2002), 415-419.
-
(2002)
Bull. London Math. Soc
, vol.34
, pp. 415-419
-
-
Bass, R.F.1
-
6
-
-
0001966997
-
Percolation perturbations in potential theory and random walks
-
Cortona, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999
-
I. Benjamini, R. Lyons, O. Schramm. Percolation perturbations in potential theory and random walks. In: Random walks and discrete potential theory (Cortona, 1997), 56-84, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999.
-
(1997)
Random Walks and Discrete Potential Theory
, pp. 56-84
-
-
Benjamini, I.1
Lyons, R.2
Schramm, O.3
-
7
-
-
33846882822
-
Quenched invariance principle for simple random walk on percolation clusters
-
N. Berger, M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Rel. Fields 137 (2007), no. 1-2, 83-120.
-
(2007)
Probab. Theory Rel. Fields
, vol.137
, Issue.1-2
, pp. 83-120
-
-
Berger, N.1
Biskup, M.2
-
8
-
-
58249130575
-
Anomalous heat-kernel decay for random walk amoung bounded random conductances
-
N. Berger, M. Biskup, C.E. Hoffman, G. Kozma. Anomalous heat-kernel decay for random walk amoung bounded random conductances. Ann. Inst. Henri Poincaré. 44no. 2 (2008), 374-392.
-
(2008)
Ann. Inst. Henri Poincaré
, vol.44
, Issue.2
, pp. 374-392
-
-
Berger, N.1
Biskup, M.2
Hoffman, C.E.3
Kozma, G.4
-
9
-
-
35549009801
-
Functional CLT for random walk among bounded random conductances
-
M. Biskup, T.M. Prescott. Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007), no. 49, 1323-1348
-
(2007)
Electron. J. Probab
, vol.12
, Issue.49
, pp. 1323-1348
-
-
Biskup, M.1
Prescott, T.M.2
-
11
-
-
4243050433
-
Surface order large deviations for 2D FK-percolation and Potts models
-
O. Couronné, R.J. Messikh. Surface order large deviations for 2D FK-percolation and Potts models. Stoch. Proc. Appl. 113 (2004), no. 1, 81-99.
-
(2004)
Stoch. Proc. Appl
, vol.113
, Issue.1
, pp. 81-99
-
-
Couronné, O.1
Messikh, R.J.2
-
12
-
-
0001562666
-
La percolation: Un concept unificateur
-
P G. de Gennes. La percolation: un concept unificateur. La Recherche 7 (1976), 919-927.
-
(1976)
La Recherche
, vol.7
, pp. 919-927
-
-
De Gennes, P.G.1
-
13
-
-
0033481532
-
Parabolic Harnack inequality and estimates of Markov chains on graphs
-
T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoamericana 15 (1999), 181-232.
-
(1999)
Rev. Math. Iberoamericana
, vol.15
, pp. 181-232
-
-
Delmotte, T.1
-
14
-
-
0001131105
-
An invariance principle for reversible Markov processes. Applications to random motions in random environments
-
A. De Masi, PA. Ferrari, S. Goldstein, W.D. Wick. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statist. Phys. 55 (1989), 787-855.
-
(1989)
J. Statist. Phys
, vol.55
, pp. 787-855
-
-
De Masi, A.1
Ferrari, P.A.2
Goldstein, S.3
Wick, W.D.4
-
15
-
-
0030536786
-
Surface order large deviations for high-density percolation. Probab
-
J.-D. Deuschel, A. Pisztora. Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104 (1996), 467-482.
-
(1996)
Theory Related Fields
, vol.104
, pp. 467-482
-
-
Deuschel, J.-D.1
Pisztora, A.2
-
16
-
-
33646917618
-
A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash
-
E.B. Fabes, D.W Stroock. A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Mech. Rat. Anal. 96 (1986), 327-338.
-
(1986)
Arch. Mech. Rat. Anal
, vol.96
, pp. 327-338
-
-
Fabes, E.B.1
Stroock, D.W.2
-
19
-
-
36149028352
-
About diffusion processes in disordered systems
-
A. Maritan. About diffusion processes in disordered systems. J. Phys. A: Math. Gen. 21 (1988) 859-863.
-
(1988)
J. Phys. A: Math. Gen
, vol.21
, pp. 859-863
-
-
Maritan, A.1
-
20
-
-
2142701131
-
Isoperimetry and heat kernel decay on percolation clusters
-
E Mathieu, E. Remy Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004), no. 1A, 100-128.
-
(2004)
Ann. Probab
, vol.32
, Issue.1
, pp. 100-128
-
-
Mathieu, E.1
Remy, E.2
-
21
-
-
35448954938
-
Quenched invariance principles for random walks on percolation clusters
-
P Mathieu, A. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2085, 2287-2307.
-
(2007)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci
, vol.463
, Issue.2085
, pp. 2287-2307
-
-
Mathieu, P.1
Piatnitski, A.2
-
22
-
-
38349064820
-
Quenched invariance principles for random walks with random conductances
-
P. Mathieu. Quenched invariance principles for random walks with random conductances. J. OfStat Phys., 130, No. 5 (2008) 1025-1046.
-
(2008)
J. Ofstat Phys
, vol.130
, Issue.5
, pp. 1025-1046
-
-
Mathieu, P.1
-
23
-
-
0001680091
-
Continuity of solutions of parabolic and elliptic equations
-
J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931-954.
-
(1958)
Amer. J. Math
, vol.80
, pp. 931-954
-
-
Nash, J.1
-
25
-
-
2942590208
-
Quenched invariance principles for walks on clusters of percolation or among random conductances
-
V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Rel. (2004), no. 2, 219-244.
-
(2004)
Probab. Theory Rel
, Issue.2
, pp. 219-244
-
-
Sidoravicius, V.1
Sznitman, A.-S.2
|