-
5
-
-
0041416028
-
-
10.1103/PhysRevLett.91.057005
-
M. R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babić, C. Bruder, and C. Schönenberger, Phys. Rev. Lett. 91, 057005 (2003). 10.1103/PhysRevLett.91.057005
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 057005
-
-
Buitelaar, M.R.1
Belzig, W.2
Nussbaumer, T.3
Babić, B.4
Bruder, C.5
Schönenberger, C.6
-
6
-
-
33747040811
-
-
10.1038/nature05018
-
J. A. van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. De Francheschi, and L. P. Kouwenhoven, Nature (London) 442, 667 (2006). 10.1038/nature05018
-
(2006)
Nature (London)
, vol.442
, pp. 667
-
-
Van Dam, J.A.1
Nazarov, Y.V.2
Bakkers, E.P.A.M.3
De Francheschi, S.4
Kouwenhoven, L.P.5
-
7
-
-
33750900245
-
-
10.1038/nnano.2006.54
-
J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, and M. Monthioux, Nat. Nanotechnol. 1, 53 (2006). 10.1038/nnano.2006.54
-
(2006)
Nat. Nanotechnol.
, vol.1
, pp. 53
-
-
Cleuziou, J.-P.1
Wernsdorfer, W.2
Bouchiat, V.3
Ondarcuhu, T.4
Monthioux, M.5
-
9
-
-
33646897642
-
-
10.1103/PhysRevLett.96.207003
-
H. I. Jørgensen, K. Grove-Rasmussen, T. Novotný, K. Flensbert, and P. E. Lindelof, Phys. Rev. Lett. 96, 207003 (2006). 10.1103/PhysRevLett.96.207003
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 207003
-
-
Jørgensen, H.I.1
Grove-Rasmussen, K.2
Novotný, T.3
Flensbert, K.4
Lindelof, P.E.5
-
10
-
-
34548836572
-
-
10.1103/PhysRevLett.99.126602
-
A. Eichler, M. Weiss, S. Oberholzer, C. Schönenberger, A. Levy Yeyati, J. C. Cuevas, and A. Martín-Rodero, Phys. Rev. Lett. 99, 126602 (2007). 10.1103/PhysRevLett.99.126602
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 126602
-
-
Eichler, A.1
Weiss, M.2
Oberholzer, S.3
Schönenberger, C.4
Levy Yeyati, A.5
Cuevas, J.C.6
Martín-Rodero, A.7
-
11
-
-
34548854513
-
-
10.1103/PhysRevLett.99.126603
-
T. Sand-Jespersen, J. Paaske, B. M. Andersen, K. Grove-Rasmussen, H. I. Jørgensen, M. Aagesen, C. B. Sørensen, P. E. Lindelof, K. Flensberg, and J. Nygard, Phys. Rev. Lett. 99, 126603 (2007). 10.1103/PhysRevLett.99.126603
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 126603
-
-
Sand-Jespersen, T.1
Paaske, J.2
Andersen, B.M.3
Grove-Rasmussen, K.4
Jørgensen, H.I.5
Aagesen, M.6
Sørensen, C.B.7
Lindelof, P.E.8
Flensberg, K.9
Nygard, J.10
-
12
-
-
34548164874
-
-
10.1021/nl071152w
-
H. I. Jørgensen, T. Novotný, K. Grove-Rasmussen, K. Flensberg, and P. E. Lindelof, Nano Lett. 7, 2441 (2007). 10.1021/nl071152w
-
(2007)
Nano Lett.
, vol.7
, pp. 2441
-
-
Jørgensen, H.I.1
Novotný, T.2
Grove-Rasmussen, K.3
Flensberg, K.4
Lindelof, P.E.5
-
14
-
-
59249090948
-
-
arXiv:0810:1671 (unpublished).
-
A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden, C. Schönenberger, and H. Bouchiat, arXiv:0810:1671 (unpublished).
-
-
-
Eichler, A.1
Deblock, R.2
Weiss, M.3
Karrasch, C.4
Meden, V.5
Schönenberger, C.6
Bouchiat, H.7
-
19
-
-
42749098941
-
-
10.1103/PhysRevB.70.020502
-
M.-S. Choi, M. Lee, K. Kang, and W. Belzig, Phys. Rev. B 70, 020502 (R) (2004). 10.1103/PhysRevB.70.020502
-
(2004)
Phys. Rev. B
, vol.70
, pp. 020502
-
-
Choi, M.-S.1
Lee, M.2
Kang, K.3
Belzig, W.4
-
21
-
-
4344596766
-
-
10.1103/PhysRevLett.93.047002;
-
F. Siano and R. Egger, Phys. Rev. Lett. 93, 047002 (2004) 10.1103/PhysRevLett.93.047002
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 047002
-
-
Siano, F.1
Egger, R.2
-
22
-
-
18044393810
-
-
10.1103/PhysRevLett.94.039902
-
F. Siano and R. Egger, Phys. Rev. Lett. 94, 039902 (E) (2005). 10.1103/PhysRevLett.94.039902
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 039902
-
-
Siano, F.1
Egger, R.2
-
25
-
-
0037166859
-
-
10.1103/PhysRevLett.88.256806
-
K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 88, 256806 (2002). 10.1103/PhysRevLett.88.256806
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 256806
-
-
Kobayashi, K.1
Aikawa, H.2
Katsumoto, S.3
Iye, Y.4
-
26
-
-
19544371186
-
-
10.1103/PhysRevLett.93.106803
-
A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 93, 106803 (2004). 10.1103/PhysRevLett.93.106803
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 106803
-
-
Johnson, A.C.1
Marcus, C.M.2
Hanson, M.P.3
Gossard, A.C.4
-
27
-
-
20444454689
-
-
10.1143/JPSJ.73.3235
-
H. Aikawa, K. Kobayashi, A. Sano, S. Katsumoto, and Y. Iye, J. Phys. Soc. Jpn. 73, 3235 (2004). 10.1143/JPSJ.73.3235
-
(2004)
J. Phys. Soc. Jpn.
, vol.73
, pp. 3235
-
-
Aikawa, H.1
Kobayashi, K.2
Sano, A.3
Katsumoto, S.4
Iye, Y.5
-
28
-
-
3343004181
-
-
10.1103/PhysRevLett.74.4047
-
A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995). 10.1103/PhysRevLett.74.4047
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4047
-
-
Yacoby, A.1
Heiblum, M.2
Mahalu, D.3
Shtrikman, H.4
-
29
-
-
0031012922
-
-
10.1038/385417a0
-
R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Nature (London) 385, 417 (1997). 10.1038/385417a0
-
(1997)
Nature (London)
, vol.385
, pp. 417
-
-
Schuster, R.1
Buks, E.2
Heiblum, M.3
Mahalu, D.4
Umansky, V.5
Shtrikman, H.6
-
30
-
-
23644442251
-
-
10.1038/nature03899
-
M. Avinun-Kalish, M. Heiblum, O. Zarchin, D. Mahalu, and V. Umansky, Nature (London) 436, 529 (2005). 10.1038/nature03899
-
(2005)
Nature (London)
, vol.436
, pp. 529
-
-
Avinun-Kalish, M.1
Heiblum, M.2
Zarchin, O.3
Mahalu, D.4
Umansky, V.5
-
32
-
-
34247857394
-
-
10.1103/PhysRevLett.98.186802;
-
C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von Delft, and V. Meden, Phys. Rev. Lett. 98, 186802 (2007) 10.1103/PhysRevLett.98.186802
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 186802
-
-
Karrasch, C.1
Hecht, T.2
Weichselbaum, A.3
Oreg, Y.4
Von Delft, J.5
Meden, V.6
-
33
-
-
34248563491
-
-
10.1088/1367-2630/9/5/123
-
C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von Delft, and V. Meden, New J. Phys. 9, 123 (2007). 10.1088/1367-2630/9/5/123
-
(2007)
New J. Phys.
, vol.9
, pp. 123
-
-
Karrasch, C.1
Hecht, T.2
Weichselbaum, A.3
Oreg, Y.4
Von Delft, J.5
Meden, V.6
-
34
-
-
22544447124
-
-
10.1088/0953-8984/17/29/006
-
Z.-Y. Zhang, J. Phys.: Condens. Matter 17, 4637 (2005). 10.1088/0953-8984/17/29/006
-
(2005)
J. Phys.: Condens. Matter
, vol.17
, pp. 4637
-
-
Zhang, Z.-Y.1
-
35
-
-
59249094876
-
-
This was already pointed out in Ref..
-
This was already pointed out in Ref..
-
-
-
-
37
-
-
59249089544
-
-
The FRG approximation introduced in Sec. 3 does not allow for computing the impurity spectral function. Thus, we cannot address the question whether there is actually a Kondo resonance or a BCS gap governing the low-energy behavior for the problem at hand. However, numerical renormalization-group calculations for the simple quantum dot Josephson junction (td =0) (Ref.) as well as for the nonsuperconducting setup (Δ=0) (Ref.) showed that at sufficiently large U the physics is crucially influenced by the Kondo effect. It is reasonable to assume that Kondo correlations are still present for the problem at hand.
-
The FRG approximation introduced in Sec. 3 does not allow for computing the impurity spectral function. Thus, we cannot address the question whether there is actually a Kondo resonance or a BCS gap governing the low-energy behavior for the problem at hand. However, numerical renormalization-group calculations for the simple quantum dot Josephson junction (td =0) (Ref.) as well as for the nonsuperconducting setup (Δ=0) (Ref.) showed that at sufficiently large U the physics is crucially influenced by the Kondo effect. It is reasonable to assume that Kondo correlations are still present for the problem at hand.
-
-
-
-
39
-
-
59249106756
-
-
Focusing on the limit of small Δ/ TK, this issue was previously raised in Ref.. However, the author fails to treat the noninteracting limit U=0 correctly (Ref.), rendering his results a priori questionable.
-
Focusing on the limit of small Δ/ TK, this issue was previously raised in Ref.. However, the author fails to treat the noninteracting limit U=0 correctly (Ref.), rendering his results a priori questionable.
-
-
-
-
43
-
-
59249103695
-
-
In the discussion of the phase boundary we implicitly assume that the hybridization strength Γ is chosen as the unit of energy.
-
In the discussion of the phase boundary we implicitly assume that the hybridization strength Γ is chosen as the unit of energy.
-
-
-
-
44
-
-
59249087673
-
-
Since our FRG scheme turns out to be quantitatively reliable only up to some intermediate Coulomb interaction U/Γ≈8 (where Kondo correlations start to become important), we cannot describe the singlet-doublet phase transition in the extreme limit of Δ/Γ≪1 (as this would require TK/Γ≪1), no matter which quantity is used to describe the phase boundary. However, for the simple quantum dot Josephson junction (td =0), it was demonstrated that generic physics shows up for small values of TK /Δ (but not necessarily extremely small TK itself). Since we do not observe any qualitative changes apart from an overall increase in the size of the singlet phase in going from Δ=∞ to Δ/Γ≈0.2, it is reasonable to assume that the same holds for the problem at hand.
-
Since our FRG scheme turns out to be quantitatively reliable only up to some intermediate Coulomb interaction U/Γ≈8 (where Kondo correlations start to become important), we cannot describe the singlet-doublet phase transition in the extreme limit of Δ/Γ≪1 (as this would require TK /Γ≪1), no matter which quantity is used to describe the phase boundary. However, for the simple quantum dot Josephson junction (td =0), it was demonstrated that generic physics shows up for small values of TK /Δ (but not necessarily extremely small TK itself). Since we do not observe any qualitative changes apart from an overall increase in the size of the singlet phase in going from Δ=∞ to Δ/Γ≈0.2, it is reasonable to assume that the same holds for the problem at hand.
-
-
-
-
45
-
-
59249100154
-
-
For the simple quantum dot Josephson junction (td =0), it was previously observed that in the doublet phase the supercurrent obtained from the FRG is completely independent of both the two-particle interaction strength U and the impurity energy (Ref.). Even though this is an artifact of the approximative approach, numerical RG calculations showed that physical properties only vary slightly in this regime (Ref.).
-
For the simple quantum dot Josephson junction (td =0), it was previously observed that in the doublet phase the supercurrent obtained from the FRG is completely independent of both the two-particle interaction strength U and the impurity energy (Ref.). Even though this is an artifact of the approximative approach, numerical RG calculations showed that physical properties only vary slightly in this regime (Ref.).
-
-
-
-
46
-
-
59249097023
-
-
Some generalized perturbative approach (Ref.) could be employed in order to get some intuitive understanding why J can become negative in the singlet phase. This is, however, out of the scope of this paper.
-
Some generalized perturbative approach (Ref.) could be employed in order to get some intuitive understanding why J can become negative in the singlet phase. This is, however, out of the scope of this paper.
-
-
-
|