-
5
-
-
21144474137
-
Non-perturbative approximate solution for Lane-Emden equation
-
Shawagfeh N.T. Non-perturbative approximate solution for Lane-Emden equation. J. Math. Phys. 34 9 (1993) 4364-4369
-
(1993)
J. Math. Phys.
, vol.34
, Issue.9
, pp. 4364-4369
-
-
Shawagfeh, N.T.1
-
6
-
-
0040926145
-
A new algorithm for solving differential equations of Lane-Emden type
-
Wazwaz A.-M. A new algorithm for solving differential equations of Lane-Emden type. Appl. Math. Comput. 118 (2001) 287-310
-
(2001)
Appl. Math. Comput.
, vol.118
, pp. 287-310
-
-
Wazwaz, A.-M.1
-
7
-
-
0037052586
-
A new method for solving singular value problems in the second order ordinary differential equations
-
Wazwaz A.-M. A new method for solving singular value problems in the second order ordinary differential equations. Appl. Math. Comput. 128 (2001) 45-57
-
(2001)
Appl. Math. Comput.
, vol.128
, pp. 45-57
-
-
Wazwaz, A.-M.1
-
8
-
-
1842864972
-
Accelerated power series solution of polytropic and isothermal gas spheres
-
Nouh M.I. Accelerated power series solution of polytropic and isothermal gas spheres. New Astron. 9 (2004) 467-473
-
(2004)
New Astron.
, vol.9
, pp. 467-473
-
-
Nouh, M.I.1
-
9
-
-
0035976505
-
Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs
-
Mandelzweig V.B., and Tabakin F. Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141 (2001) 268-281
-
(2001)
Comput. Phys. Commun.
, vol.141
, pp. 268-281
-
-
Mandelzweig, V.B.1
Tabakin, F.2
-
10
-
-
0037799370
-
Linearization method in classical and quantum mechanics
-
Ramos J.I. Linearization method in classical and quantum mechanics. Comput Phys. Commun. 153 (2003) 199-208
-
(2003)
Comput Phys. Commun.
, vol.153
, pp. 199-208
-
-
Ramos, J.I.1
-
11
-
-
2542493856
-
Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents
-
Bozkhov Y., and Martins A.C.G. Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents. Nonlinear Anal. 57 (2004) 773-793
-
(2004)
Nonlinear Anal.
, vol.57
, pp. 773-793
-
-
Bozkhov, Y.1
Martins, A.C.G.2
-
12
-
-
33645967145
-
Approximate implicit solution of a Lane-Emden equation
-
Momoniat E., and Harley C. Approximate implicit solution of a Lane-Emden equation. New Astron. 11 (2006) 520-526
-
(2006)
New Astron.
, vol.11
, pp. 520-526
-
-
Momoniat, E.1
Harley, C.2
-
13
-
-
0034345397
-
Exact solutions of the generalized Lane-Emden equation
-
Goenner H., and Havas P. Exact solutions of the generalized Lane-Emden equation. J. Math. Phys. 41 (2000) 7029-7042
-
(2000)
J. Math. Phys.
, vol.41
, pp. 7029-7042
-
-
Goenner, H.1
Havas, P.2
-
14
-
-
0037542776
-
A new analytic algorithm of Lane-Emden type equations
-
Liao S. A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142 (2003) 1-16
-
(2003)
Appl. Math. Comput.
, vol.142
, pp. 1-16
-
-
Liao, S.1
-
15
-
-
0038182679
-
Variational approach to the Lane-Emden equation
-
He J.H. Variational approach to the Lane-Emden equation. Appl. Math. Comput. 143 (2003) 539-541
-
(2003)
Appl. Math. Comput.
, vol.143
, pp. 539-541
-
-
He, J.H.1
-
16
-
-
43049098279
-
Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method
-
10.1016/j.chaos.2006.11.018
-
Ramos J.I. Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. Chaos Solitons Fractals (2006) 10.1016/j.chaos.2006.11.018
-
(2006)
Chaos Solitons Fractals
-
-
Ramos, J.I.1
-
17
-
-
34548249064
-
Solutions of singular IVP's of Lane-Emden type by homotopy pertutbation method
-
Öziş T., and Yi{dotless}ldi{dotless}ri{dotless}m A. Solutions of singular IVP's of Lane-Emden type by homotopy pertutbation method. Phys. Lett. A 369 (2007) 70-76
-
(2007)
Phys. Lett. A
, vol.369
, pp. 70-76
-
-
Öziş, T.1
Yildirim, A.2
-
18
-
-
34247347840
-
Solutions of a class of singular second-order IVPs by homotopy-perturbation method
-
10.1016/j.physleta.2007.02.002
-
Chowdhury M.S.H., and Hashim I. Solutions of a class of singular second-order IVPs by homotopy-perturbation method. Phys. Lett. A. (2007) 10.1016/j.physleta.2007.02.002
-
(2007)
Phys. Lett. A.
-
-
Chowdhury, M.S.H.1
Hashim, I.2
-
19
-
-
34548509029
-
Approximate solution of a differential equation arising in astrophysics using the variational iteration method
-
Dehghan M., and Shakeri F. Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13 (2008) 53-59
-
(2008)
New Astron.
, vol.13
, pp. 53-59
-
-
Dehghan, M.1
Shakeri, F.2
-
20
-
-
0000092673
-
Variational iteration method - A kind of non-linear analytical technique: Some examples
-
He J.H. Variational iteration method - A kind of non-linear analytical technique: Some examples. Int. J. Nonlinear Mech. 34 4 (1999) 699-708
-
(1999)
Int. J. Nonlinear Mech.
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.H.1
-
21
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20 10 (2006) 1141-1199
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, Issue.10
, pp. 1141-1199
-
-
He, J.H.1
-
22
-
-
34250668369
-
-
J.H. He, Variational iteration method-Some recent results and new interpretations, J. Comput. Appl. Math. doi:10.1016/j.cam.2006.07.009
-
J.H. He, Variational iteration method-Some recent results and new interpretations, J. Comput. Appl. Math. doi:10.1016/j.cam.2006.07.009
-
-
-
-
23
-
-
59049097603
-
-
J.H He, Non-Perturbative Methods for Strongly nonlinear Problems, Dissertation, de-verlag im Internet GmbH, Berlin, 2006
-
J.H He, Non-Perturbative Methods for Strongly nonlinear Problems, Dissertation, de-verlag im Internet GmbH, Berlin, 2006
-
-
-
-
24
-
-
30344475545
-
Construction of solitary solution and Compton-like solution by variational iteration method
-
He J.H., and Wu X.H. Construction of solitary solution and Compton-like solution by variational iteration method. Chaos Solitons Fractals 29 (2006) 108-113
-
(2006)
Chaos Solitons Fractals
, vol.29
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
25
-
-
32644457439
-
The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations
-
Bildik N., and Konuralp A. The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 7 (2006) 65-70
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 65-70
-
-
Bildik, N.1
Konuralp, A.2
-
26
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z.M., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7 (2006) 27-34
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 27-34
-
-
Odibat, Z.M.1
Momani, S.2
-
27
-
-
24944474278
-
Application of He's variational iteration method to Helmotz equation
-
Momani S., and Abuasad S. Application of He's variational iteration method to Helmotz equation. Chaos Solitons Fractals 27 (2006) 1119-1123
-
(2006)
Chaos Solitons Fractals
, vol.27
, pp. 1119-1123
-
-
Momani, S.1
Abuasad, S.2
-
28
-
-
34447499980
-
1 / 3 force by He's variational iteration method
-
1 / 3 force by He's variational iteration method. J. Sound Vib. 306 1-2 (2007) 372-376
-
(2007)
J. Sound Vib.
, vol.306
, Issue.1-2
, pp. 372-376
-
-
Öziş, T.1
Yildirim, A.2
-
29
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z.M. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31 (2007) 1248-1255
-
(2007)
Chaos Solitons Fractals
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.M.2
-
30
-
-
34249893388
-
Approximate solutions of K(2,2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method
-
Tari H., Ganji D.D., and Rostamian M. Approximate solutions of K(2,2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method. Int. J. Nonlinear Sci. Numer. Simul. 8 2 (2007) 203-210
-
(2007)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.8
, Issue.2
, pp. 203-210
-
-
Tari, H.1
Ganji, D.D.2
Rostamian, M.3
-
31
-
-
33748578650
-
Variational iteration method for one dimensional nonlinear thermoelasticity
-
Sweilam N.H., and khader M.M. Variational iteration method for one dimensional nonlinear thermoelasticity. Chaos Solitons Fractals 32 (2007) 145-149
-
(2007)
Chaos Solitons Fractals
, vol.32
, pp. 145-149
-
-
Sweilam, N.H.1
khader, M.M.2
-
32
-
-
34249883978
-
Variational iteration method for construction of some compact and noncompact structures of Klein-Gordon equations
-
Yusufoǧlu E. Variational iteration method for construction of some compact and noncompact structures of Klein-Gordon equations. Int. J. Nonlinear Sci. Numer. 8 2 (2007) 153-158
-
(2007)
Int. J. Nonlinear Sci. Numer.
, vol.8
, Issue.2
, pp. 153-158
-
-
Yusufoǧlu, E.1
-
33
-
-
42449109580
-
Application of the variational iteration method to thin circular plates
-
Özer H. Application of the variational iteration method to thin circular plates. Int. J. Nonlinear Sci. Numer. Simul. 9 1 (2008) 27-32
-
(2008)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.9
, Issue.1
, pp. 27-32
-
-
Özer, H.1
|