-
1
-
-
23944509385
-
Adaptive Finite Element Methods for Differential Equations
-
Basel: Birkhäuser
-
BANGERTH, W. & RANNACHER, R. (2003) Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Basel: Birkhäuser.
-
(2003)
Lectures in Mathematics ETH Zürich
-
-
BANGERTH, W.1
RANNACHER, R.2
-
2
-
-
0030383153
-
A feed-back approach to error control in finite element methods: Basic analysis and examples
-
BECKER, R. & RANNACHER, R. (1996) A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math., 4, 237-264.
-
(1996)
East-West J. Numer. Math
, vol.4
, pp. 237-264
-
-
BECKER, R.1
RANNACHER, R.2
-
3
-
-
85022001969
-
An optimal control approach to a posteriori error estimation in finite element methods
-
BECKER, R. & RANNACHER, R. (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer., 10, 1-102.
-
(2001)
Acta Numer
, vol.10
, pp. 1-102
-
-
BECKER, R.1
RANNACHER, R.2
-
4
-
-
27744532184
-
Estimation of higher Sobolev norm from lower order approximation
-
CARSTENSEN, C. (2005) Estimation of higher Sobolev norm from lower order approximation. SIAM J. Numer. Anal., 42, 2136-2147.
-
(2005)
SIAM J. Numer. Anal
, vol.42
, pp. 2136-2147
-
-
CARSTENSEN, C.1
-
5
-
-
0003074690
-
Elliptic Boundary Value Problems on Corner Domains
-
Berlin: Springer
-
DAUGE, M. (1988) Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Berlin: Springer.
-
(1988)
Lecture Notes in Mathematics
, vol.1341
-
-
DAUGE, M.1
-
6
-
-
0009522795
-
Introduction to adaptive methods for differential equations
-
ERIKSSON, K., ESTEP, D., HANSBO, R & JOHNSON, C. (1995) Introduction to adaptive methods for differential equations. Acta Numer, 4, 105-158.
-
(1995)
Acta Numer
, vol.4
, pp. 105-158
-
-
ERIKSSON, K.1
ESTEP, D.2
HANSBO, R.3
JOHNSON, C.4
-
7
-
-
84966225938
-
An adaptive finite element method for linear elliptic problems
-
ERIKSSON, K. & JOHNSON, C. (1998) An adaptive finite element method for linear elliptic problems, Math. Comp., 50, 361-383.
-
(1998)
Math. Comp
, vol.50
, pp. 361-383
-
-
ERIKSSON, K.1
JOHNSON, C.2
-
8
-
-
0026106415
-
Adaptive finite element methods for parabolic problems. I. A linear model problem
-
ERIKSSON, K. & JOHNSON, C. (1991) Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal, 28, 43-77.
-
(1991)
SIAM J. Numer. Anal
, vol.28
, pp. 43-77
-
-
ERIKSSON, K.1
JOHNSON, C.2
-
9
-
-
85021895182
-
Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality
-
GILES, M. B. & SÜLI, E. (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer., 11, 145-236.
-
(2002)
Acta Numer
, vol.11
, pp. 145-236
-
-
GILES, M.B.1
SÜLI, E.2
-
10
-
-
0025488567
-
Adaptive finite element methods for diffusion and convection problems
-
JOHNSON, C. (1990) Adaptive finite element methods for diffusion and convection problems. Comput. Methods Appl. Meck Eng., 82, 301-322.
-
(1990)
Comput. Methods Appl. Meck Eng
, vol.82
, pp. 301-322
-
-
JOHNSON, C.1
-
11
-
-
4244208596
-
-
Technical Note BN-1137. College Park, MD: Institute for Physical Science and Technology, University of Maryland
-
KELLOGG, B. (1992) Notes on piecewise smooth elliptic boundary value problems. Technical Note BN-1137. College Park, MD: Institute for Physical Science and Technology, University of Maryland.
-
(1992)
Notes on piecewise smooth elliptic boundary value problems
-
-
KELLOGG, B.1
-
12
-
-
0038271905
-
Local a posteriori error estimates and adaptive control of pollution effects
-
LIAO, X. & NOCHETTO, R. H. (2003) Local a posteriori error estimates and adaptive control of pollution effects. Numer. Methods Partial Differ. Equ., 19, 421-442.
-
(2003)
Numer. Methods Partial Differ. Equ
, vol.19
, pp. 421-442
-
-
LIAO, X.1
NOCHETTO, R.H.2
-
13
-
-
0034389093
-
Numerical analysis of a posteriori finite element bounds for linear functional outputs
-
MADAY, Y. & PATERA, A. T. (2000) Numerical analysis of a posteriori finite element bounds for linear functional outputs. Math. Models Methods Appl. Sci., 10, 785-799.
-
(2000)
Math. Models Methods Appl. Sci
, vol.10
, pp. 785-799
-
-
MADAY, Y.1
PATERA, A.T.2
-
14
-
-
0032496557
-
A hierarchical duality approach to bounds for the outputs of partial differential equations
-
PARASCHIVOIU, M. & PATERA, A. T. (1998) A hierarchical duality approach to bounds for the outputs of partial differential equations. Comput. Methods Appl. Mech. Eng., 158, 389-407.
-
(1998)
Comput. Methods Appl. Mech. Eng
, vol.158
, pp. 389-407
-
-
PARASCHIVOIU, M.1
PATERA, A.T.2
-
15
-
-
0031443748
-
A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations
-
PARASCHIVOIU, M., PERAIRE, J. & PATERA, A. T. (1997) A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Methods Appl. Mech. Eng., 150, 289-312.
-
(1997)
Comput. Methods Appl. Mech. Eng
, vol.150
, pp. 289-312
-
-
PARASCHIVOIU, M.1
PERAIRE, J.2
PATERA, A.T.3
-
16
-
-
0032669875
-
On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors
-
PRUDHOMME, S. & ODEN, J. T. (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng., 176, 313-331.
-
(1999)
Comput. Methods Appl. Mech. Eng
, vol.176
, pp. 313-331
-
-
PRUDHOMME, S.1
ODEN, J.T.2
-
18
-
-
84966200902
-
Finite element interpolation of nonsmooth functions satisfying boundary conditions
-
SCOTT, L. R. & ZHANG, S. (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput, 54, 483-493.
-
(1990)
Math. Comput
, vol.54
, pp. 483-493
-
-
SCOTT, L.R.1
ZHANG, S.2
-
19
-
-
58849127218
-
-
SÜLI, E. (2004) Review of the book Adaptive finite element methods for differential equations by W. Bangerth and R. Rannacher. Math. Comput., 74, 1033-1039.
-
SÜLI, E. (2004) Review of the book Adaptive finite element methods for differential equations by W. Bangerth and R. Rannacher. Math. Comput., 74, 1033-1039.
-
-
-
|