메뉴 건너뛰기




Volumn 89, Issue 5, 2009, Pages 851-856

The Poisson sum formulae associated with the fractional Fourier transform

Author keywords

Band limited signal; Fractional Fourier series; Fractional Fourier transform; Poisson sum formula

Indexed keywords

FOURIER ANALYSIS; FOURIER SERIES; HARMONIC ANALYSIS; MINES; POISSON DISTRIBUTION; POISSON EQUATION; RESEARCH; SIGNAL THEORY;

EID: 58849116271     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2008.10.030     Document Type: Article
Times cited : (27)

References (25)
  • 1
    • 0028546458 scopus 로고
    • The fractional Fourier transform and time-frequency representations
    • Almeida L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42 11 (November 1994) 3084-3091
    • (1994) IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 3084-3091
    • Almeida, L.B.1
  • 2
    • 0030243105 scopus 로고    scopus 로고
    • Digital computation of the fractional Fourier transform
    • Ozaktas H.M., Arikan O., and Kutay M.A. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44 9 (September 1996) 2141-2149
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.9 , pp. 2141-2149
    • Ozaktas, H.M.1    Arikan, O.2    Kutay, M.A.3
  • 5
    • 0028459601 scopus 로고
    • Relationships between the Radon-Wigner and fractional Fourier transform
    • Ozaktas A.M., and Soffer B.H. Relationships between the Radon-Wigner and fractional Fourier transform. J. Opt. Soc. Am. A 11 (1994) 1798-1801
    • (1994) J. Opt. Soc. Am. A , vol.11 , pp. 1798-1801
    • Ozaktas, A.M.1    Soffer, B.H.2
  • 6
    • 0030413251 scopus 로고    scopus 로고
    • On the relationship between the Fourier and fractional Fourier transforms
    • Zayed A.I. On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 3 12 (December 1996) 310-311
    • (1996) IEEE Signal Process. Lett. , vol.3 , Issue.12 , pp. 310-311
    • Zayed, A.I.1
  • 7
    • 0030107597 scopus 로고    scopus 로고
    • On bandlimited signals with fractional Fourier transform
    • Xia X.-G. On bandlimited signals with fractional Fourier transform. IEEE Signal Process. Lett. 3 3 (March 1996) 72-74
    • (1996) IEEE Signal Process. Lett. , vol.3 , Issue.3 , pp. 72-74
    • Xia, X.-G.1
  • 8
    • 0033345657 scopus 로고    scopus 로고
    • Unified fractional Fourier transform and sampling theorem
    • Erseghe T., Kraniauskas P., and Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process. 47 12 (December 1999) 3419-3423
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.12 , pp. 3419-3423
    • Erseghe, T.1    Kraniauskas, P.2    Cariolaro, G.3
  • 9
    • 0032669485 scopus 로고    scopus 로고
    • Discrete fractional Fourier transform based on orthogonal projections
    • Pei S.-C., Yeh M.-H., and Tseng C.-C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process. 47 5 (May 1999) 1335-1348
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.5 , pp. 1335-1348
    • Pei, S.-C.1    Yeh, M.-H.2    Tseng, C.-C.3
  • 10
    • 33747799699 scopus 로고    scopus 로고
    • Closed-form discrete fractional and affine Fourier transforms
    • Pei S.-C., and Ding J.-J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48 5 (May 2000) 1338-1353
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.5 , pp. 1338-1353
    • Pei, S.-C.1    Ding, J.-J.2
  • 12
    • 0032047886 scopus 로고    scopus 로고
    • A convolution and product theorem for the fractional Fourier transform
    • Zayed A.I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 5 4 (April 1998) 101-103
    • (1998) IEEE Signal Process. Lett. , vol.5 , Issue.4 , pp. 101-103
    • Zayed, A.I.1
  • 13
    • 0032187564 scopus 로고    scopus 로고
    • Method for defining a class of fractional operations
    • Kraniauskas P., Cariolaro G., and Erseghe T. Method for defining a class of fractional operations. IEEE Trans. Signal Process. 46 10 (October 1998) 2804-2807
    • (1998) IEEE Trans. Signal Process. , vol.46 , Issue.10 , pp. 2804-2807
    • Kraniauskas, P.1    Cariolaro, G.2    Erseghe, T.3
  • 14
    • 0030826059 scopus 로고    scopus 로고
    • Product and convolution theorems for the fractional Fourier transform
    • Almeida L.B. Product and convolution theorems for the fractional Fourier transform. IEEE Trans. Signal Process. Lett. 4 (1997) 15-17
    • (1997) IEEE Trans. Signal Process. Lett. , vol.4 , pp. 15-17
    • Almeida, L.B.1
  • 15
    • 0032138891 scopus 로고    scopus 로고
    • Hilbert transform associated with the fractional Fourier transform
    • Zayed A.I. Hilbert transform associated with the fractional Fourier transform. IEEE Signal Process. Lett. 5 8 (August 1998) 206-208
    • (1998) IEEE Signal Process. Lett. , vol.5 , Issue.8 , pp. 206-208
    • Zayed, A.I.1
  • 17
    • 0035503193 scopus 로고    scopus 로고
    • An uncertainty principle for real signals in the fractional Fourier transform domain
    • Shinde S., and Gadre V.M. An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 49 11 (November 2001) 2545-2548
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.11 , pp. 2545-2548
    • Shinde, S.1    Gadre, V.M.2
  • 18
    • 20344363176 scopus 로고    scopus 로고
    • Fractional Fourier transform: a novel tool for signal processing
    • Saxena R., and Singh K. Fractional Fourier transform: a novel tool for signal processing. J. Indian Inst. Sci. 85 (January 2005) 11-26
    • (2005) J. Indian Inst. Sci. , vol.85 , pp. 11-26
    • Saxena, R.1    Singh, K.2
  • 19
    • 33749465568 scopus 로고    scopus 로고
    • Research progress of the fractional Fourier transform in signal processing
    • Tao R., Deng B., and Wang Y. Research progress of the fractional Fourier transform in signal processing. Sci. China Ser. F: (Inf. Sci.) 49 (February 2006) 1-25
    • (2006) Sci. China Ser. F: (Inf. Sci.) , vol.49 , pp. 1-25
    • Tao, R.1    Deng, B.2    Wang, Y.3
  • 20
    • 0141892675 scopus 로고    scopus 로고
    • Sampling and series expansion theorems for fractional Fourier and other transforms
    • Candana C., and Ozaktas H.M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process. 83 (2003) 2455-2457
    • (2003) Signal Process. , vol.83 , pp. 2455-2457
    • Candana, C.1    Ozaktas, H.M.2
  • 21
    • 34347400181 scopus 로고    scopus 로고
    • Spectral analysis and reconstruction for periodic non-uniformly sampled signals in fractional Fourier domain
    • Tao R., Li B.-Z., and Wang Y. Spectral analysis and reconstruction for periodic non-uniformly sampled signals in fractional Fourier domain. IEEE Trans. Signal Process. 55 7 (July 2007) 3541-3547
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.7 , pp. 3541-3547
    • Tao, R.1    Li, B.-Z.2    Wang, Y.3
  • 22
    • 0026861106 scopus 로고
    • Parseval's relationship for nonuniform samples of signals with several variables
    • Feichtinger H.G. Parseval's relationship for nonuniform samples of signals with several variables. IEEE Trans. Signal Process. 40 5 (May 1992) 1262-1263
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.5 , pp. 1262-1263
    • Feichtinger, H.G.1
  • 23
    • 0021499982 scopus 로고
    • Reflections on the Poisson sum formula and the uniform sampling
    • Marvasi F. Reflections on the Poisson sum formula and the uniform sampling. Trans. IEICE Jpn. e67 9 (September 1984) 494-501
    • (1984) Trans. IEICE Jpn. , vol.e67 , Issue.9 , pp. 494-501
    • Marvasi, F.1
  • 25
    • 0033339817 scopus 로고    scopus 로고
    • Fractional Fourier series expansion for discrete-time fractional Fourier transform
    • Pei S.-C., Yeh M.-H., and Luo T.-L. Fractional Fourier series expansion for discrete-time fractional Fourier transform. IEEE Trans. Signal Process. 47 10 (October 1999) 2883-2888
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.10 , pp. 2883-2888
    • Pei, S.-C.1    Yeh, M.-H.2    Luo, T.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.