-
1
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
Almeida L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42 11 (November 1994) 3084-3091
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
2
-
-
0030243105
-
Digital computation of the fractional Fourier transform
-
Ozaktas H.M., Arikan O., and Kutay M.A. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44 9 (September 1996) 2141-2149
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, Issue.9
, pp. 2141-2149
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
-
5
-
-
0028459601
-
Relationships between the Radon-Wigner and fractional Fourier transform
-
Ozaktas A.M., and Soffer B.H. Relationships between the Radon-Wigner and fractional Fourier transform. J. Opt. Soc. Am. A 11 (1994) 1798-1801
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 1798-1801
-
-
Ozaktas, A.M.1
Soffer, B.H.2
-
6
-
-
0030413251
-
On the relationship between the Fourier and fractional Fourier transforms
-
Zayed A.I. On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 3 12 (December 1996) 310-311
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, Issue.12
, pp. 310-311
-
-
Zayed, A.I.1
-
7
-
-
0030107597
-
On bandlimited signals with fractional Fourier transform
-
Xia X.-G. On bandlimited signals with fractional Fourier transform. IEEE Signal Process. Lett. 3 3 (March 1996) 72-74
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, Issue.3
, pp. 72-74
-
-
Xia, X.-G.1
-
8
-
-
0033345657
-
Unified fractional Fourier transform and sampling theorem
-
Erseghe T., Kraniauskas P., and Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process. 47 12 (December 1999) 3419-3423
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.12
, pp. 3419-3423
-
-
Erseghe, T.1
Kraniauskas, P.2
Cariolaro, G.3
-
9
-
-
0032669485
-
Discrete fractional Fourier transform based on orthogonal projections
-
Pei S.-C., Yeh M.-H., and Tseng C.-C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process. 47 5 (May 1999) 1335-1348
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.5
, pp. 1335-1348
-
-
Pei, S.-C.1
Yeh, M.-H.2
Tseng, C.-C.3
-
10
-
-
33747799699
-
Closed-form discrete fractional and affine Fourier transforms
-
Pei S.-C., and Ding J.-J. Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48 5 (May 2000) 1338-1353
-
(2000)
IEEE Trans. Signal Process.
, vol.48
, Issue.5
, pp. 1338-1353
-
-
Pei, S.-C.1
Ding, J.-J.2
-
12
-
-
0032047886
-
A convolution and product theorem for the fractional Fourier transform
-
Zayed A.I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 5 4 (April 1998) 101-103
-
(1998)
IEEE Signal Process. Lett.
, vol.5
, Issue.4
, pp. 101-103
-
-
Zayed, A.I.1
-
14
-
-
0030826059
-
Product and convolution theorems for the fractional Fourier transform
-
Almeida L.B. Product and convolution theorems for the fractional Fourier transform. IEEE Trans. Signal Process. Lett. 4 (1997) 15-17
-
(1997)
IEEE Trans. Signal Process. Lett.
, vol.4
, pp. 15-17
-
-
Almeida, L.B.1
-
15
-
-
0032138891
-
Hilbert transform associated with the fractional Fourier transform
-
Zayed A.I. Hilbert transform associated with the fractional Fourier transform. IEEE Signal Process. Lett. 5 8 (August 1998) 206-208
-
(1998)
IEEE Signal Process. Lett.
, vol.5
, Issue.8
, pp. 206-208
-
-
Zayed, A.I.1
-
17
-
-
0035503193
-
An uncertainty principle for real signals in the fractional Fourier transform domain
-
Shinde S., and Gadre V.M. An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 49 11 (November 2001) 2545-2548
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.11
, pp. 2545-2548
-
-
Shinde, S.1
Gadre, V.M.2
-
18
-
-
20344363176
-
Fractional Fourier transform: a novel tool for signal processing
-
Saxena R., and Singh K. Fractional Fourier transform: a novel tool for signal processing. J. Indian Inst. Sci. 85 (January 2005) 11-26
-
(2005)
J. Indian Inst. Sci.
, vol.85
, pp. 11-26
-
-
Saxena, R.1
Singh, K.2
-
19
-
-
33749465568
-
Research progress of the fractional Fourier transform in signal processing
-
Tao R., Deng B., and Wang Y. Research progress of the fractional Fourier transform in signal processing. Sci. China Ser. F: (Inf. Sci.) 49 (February 2006) 1-25
-
(2006)
Sci. China Ser. F: (Inf. Sci.)
, vol.49
, pp. 1-25
-
-
Tao, R.1
Deng, B.2
Wang, Y.3
-
20
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transforms
-
Candana C., and Ozaktas H.M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process. 83 (2003) 2455-2457
-
(2003)
Signal Process.
, vol.83
, pp. 2455-2457
-
-
Candana, C.1
Ozaktas, H.M.2
-
21
-
-
34347400181
-
Spectral analysis and reconstruction for periodic non-uniformly sampled signals in fractional Fourier domain
-
Tao R., Li B.-Z., and Wang Y. Spectral analysis and reconstruction for periodic non-uniformly sampled signals in fractional Fourier domain. IEEE Trans. Signal Process. 55 7 (July 2007) 3541-3547
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, Issue.7
, pp. 3541-3547
-
-
Tao, R.1
Li, B.-Z.2
Wang, Y.3
-
22
-
-
0026861106
-
Parseval's relationship for nonuniform samples of signals with several variables
-
Feichtinger H.G. Parseval's relationship for nonuniform samples of signals with several variables. IEEE Trans. Signal Process. 40 5 (May 1992) 1262-1263
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, Issue.5
, pp. 1262-1263
-
-
Feichtinger, H.G.1
-
23
-
-
0021499982
-
Reflections on the Poisson sum formula and the uniform sampling
-
Marvasi F. Reflections on the Poisson sum formula and the uniform sampling. Trans. IEICE Jpn. e67 9 (September 1984) 494-501
-
(1984)
Trans. IEICE Jpn.
, vol.e67
, Issue.9
, pp. 494-501
-
-
Marvasi, F.1
-
25
-
-
0033339817
-
Fractional Fourier series expansion for discrete-time fractional Fourier transform
-
Pei S.-C., Yeh M.-H., and Luo T.-L. Fractional Fourier series expansion for discrete-time fractional Fourier transform. IEEE Trans. Signal Process. 47 10 (October 1999) 2883-2888
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.10
, pp. 2883-2888
-
-
Pei, S.-C.1
Yeh, M.-H.2
Luo, T.-L.3
|