-
2
-
-
18944403822
-
Time-dependent networks as models to achieve fast exact time-table queries
-
Proceedings of ATMOS Workshop 2003
-
G. Brodal and R. Jacob. Time-dependent networks as models to achieve fast exact time-table queries. In Proceedings of ATMOS Workshop 2003, Electronic Notes in Theoretical Computer Science 92, 2004.
-
(2004)
Electronic Notes in Theoretical Computer Science
, vol.92
-
-
Brodal, G.1
Jacob, R.2
-
3
-
-
35548983783
-
More Algorithms for All-Pairs Shortest Paths in Weighted Graphs
-
T. M. Chan. More Algorithms for All-Pairs Shortest Paths in Weighted Graphs. In Proc. of STOC, 2007.
-
(2007)
Proc. of STOC
-
-
Chan, T.M.1
-
4
-
-
85023205150
-
Matrix multiplication via arithmetic progressions
-
D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions. J. Symbolic Computation 9(3):251-280, 1990.
-
(1990)
J. Symbolic Computation
, vol.9
, Issue.3
, pp. 251-280
-
-
Coppersmith, D.1
Winograd, S.2
-
5
-
-
34147120474
-
A note on two problems in connection with graphs
-
E. W. Dijkstra. A note on two problems in connection with graphs. Numer. Math., 269-271, 1959.
-
(1959)
Numer. Math
, vol.269-271
-
-
Dijkstra, E.W.1
-
6
-
-
0003870959
-
Network flow theory
-
Technical Report Paper P-923, The Rand Corporation, Santa Monica
-
L. R. Ford. Network flow theory. Technical Report Paper P-923, The Rand Corporation, Santa Monica, 1956.
-
(1956)
-
-
Ford, L.R.1
-
7
-
-
0023384210
-
Fibonacci heaps and their uses in improved network optimization algorithms
-
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. JACM 34(3):596-615, 1987.
-
(1987)
JACM
, vol.34
, Issue.3
, pp. 596-615
-
-
Fredman, M.L.1
Tarjan, R.E.2
-
8
-
-
0028459904
-
Transdichotomous Algorithms for Minimum Spanning Trees and Shortest Paths
-
M. L. Fredman and D. E. Willard. Transdichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. JCSS 48:533-551, 1994.
-
(1994)
JCSS
, vol.48
, pp. 533-551
-
-
Fredman, M.L.1
Willard, D.E.2
-
9
-
-
0031122908
-
All pairs shortest paths for graphs with small integer length edges
-
Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer length edges. JCSS 54:243-254, 1997.
-
(1997)
JCSS
, vol.54
, pp. 243-254
-
-
Galil, Z.1
Margalit, O.2
-
10
-
-
0027271604
-
Scaling algorithms for the shortest paths problem
-
A. Goldberg. Scaling algorithms for the shortest paths problem. In Proc. of SODA, 222-231, 1993.
-
(1993)
Proc. of SODA
, pp. 222-231
-
-
Goldberg, A.1
-
11
-
-
33750693389
-
5/4) Time Algorithm for All Pairs Shortest Paths
-
Proc. of ESA, Springer-Verlag
-
5/4) Time Algorithm for All Pairs Shortest Paths. In Proc. of ESA, Springer-Verlag LNCS 4168:411-417, 2006.
-
(2006)
LNCS
, vol.4168
, pp. 411-417
-
-
Han, Y.1
-
12
-
-
26444478558
-
LCA queries in directed acyclic graphs
-
Proc. of ICALP, Springer-Verlag
-
M. Kowaluk and A. Lingas. LCA queries in directed acyclic graphs. In Proc. of ICALP, Springer-Verlag LNCS 3580:241-248, 2005.
-
(2005)
LNCS
, vol.3580
, pp. 241-248
-
-
Kowaluk, M.1
Lingas, A.2
-
14
-
-
0344461964
-
A Variant on the Shortest-Route Problem
-
G. J. Minty. A Variant on the Shortest-Route Problem, Operations Research, 6(6):882-883, 1958.
-
(1958)
Operations Research
, vol.6
, Issue.6
, pp. 882-883
-
-
Minty, G.J.1
-
17
-
-
84929081893
-
Using Multi-level Graphs for Timetable Information in Railway Systems
-
Revised Papers From the 4th international Workshop on Algorithm Engineering and Experiments. D. M. Mount and C. Stein, Eds
-
F. Schulz, D. Wagner, and C. D. Zaroliagis. Using Multi-level Graphs for Timetable Information in Railway Systems. In Revised Papers From the 4th international Workshop on Algorithm Engineering and Experiments. D. M. Mount and C. Stein, Eds. Lecture Notes In Computer Science 2409, 43-59, 2002.
-
(2002)
Lecture Notes In Computer Science
, vol.2409
, pp. 43-59
-
-
Schulz, F.1
Wagner, D.2
Zaroliagis, C.D.3
-
18
-
-
0029509262
-
On the all-pairs-shortest-path problem in unweighted undirected graphs
-
R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. JCSS 51:400-403, 1995.
-
(1995)
JCSS
, vol.51
, pp. 400-403
-
-
Seidel, R.1
-
19
-
-
70349148844
-
All-Pairs Bottleneck Paths in Vertex Weighted Graphs
-
A. Shapira, R. Yuster and U. Zwick. All-Pairs Bottleneck Paths in Vertex Weighted Graphs. In Proc. of SODA, 978-985, 2007.
-
(2007)
Proc. of SODA
, vol.978-985
-
-
Shapira, A.1
Yuster, R.2
Zwick, U.3
-
20
-
-
0033309270
-
All Pairs Shortest Paths in Undirected Graphs with Integer Weights
-
A. Shoshan and U. Zwick. All Pairs Shortest Paths in Undirected Graphs with Integer Weights. In Proc. of FOGS, 605-614, 1999.
-
(1999)
Proc. of FOGS
, vol.605-614
-
-
Shoshan, A.1
Zwick, U.2
-
21
-
-
58649116339
-
-
Private communication
-
R. E. Tarjan, Private communication.
-
-
-
Tarjan, R.E.1
-
22
-
-
0000778521
-
Undirected single-source shortest paths with positive integer weights in linear time
-
M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46(3):362-394, 1999.
-
(1999)
J. ACM
, vol.46
, Issue.3
, pp. 362-394
-
-
Thorup, M.1
-
24
-
-
58649113951
-
All-Pairs Bottleneck Paths For General Graphs in Truly Sub-Cubic Time
-
V. Vassilevska, R. Williams and R. Yuster. All-Pairs Bottleneck Paths For General Graphs in Truly Sub-Cubic Time. In Proc. of STOC, 2007.
-
(2007)
Proc. of STOC
-
-
Vassilevska, V.1
Williams, R.2
Yuster, R.3
-
25
-
-
0012584372
-
All pairs shortest paths using bridging sets and rectangular matrix multiplication
-
U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. JACM 49(3):289-317, 2002.
-
(2002)
JACM
, vol.49
, Issue.3
, pp. 289-317
-
-
Zwick, U.1
|