메뉴 건너뛰기




Volumn 53, Issue 4, 2009, Pages 1414-1426

Adaptive clustering for time series: Application for identifying cell cycle expressed genes

Author keywords

[No Author keywords available]

Indexed keywords

CELL PROLIFERATION; GENE EXPRESSION; TIME SERIES;

EID: 58549100651     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.11.031     Document Type: Article
Times cited : (13)

References (27)
  • 3
    • 35248873975 scopus 로고    scopus 로고
    • Compression technique preserving correlations of a multivariate temporal sequence
    • Berthold M.R., Lenz H.-J., Bradley E., Kruse R., and Borgelt C. (Eds), Springer. 3-540-40813-4
    • Chouakria Douzal A. Compression technique preserving correlations of a multivariate temporal sequence. In: Berthold M.R., Lenz H.-J., Bradley E., Kruse R., and Borgelt C. (Eds). Advances in Intelligent Data Analysis vol. V (2003), Springer. 3-540-40813-4 566-577
    • (2003) Advances in Intelligent Data Analysis , vol.V , pp. 566-577
    • Chouakria Douzal, A.1
  • 4
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • Datta S., and Datta S. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19 4 (2003) 459-466
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 5
    • 33749428430 scopus 로고    scopus 로고
    • Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
    • Datta S., and Datta S. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics 7 (2006) 397
    • (2006) BMC Bioinformatics , vol.7 , pp. 397
    • Datta, S.1    Datta, S.2
  • 7
    • 0033031437 scopus 로고    scopus 로고
    • DNA arrays for analysis of gene expression
    • Eisen M.B., and Brown P.O. DNA arrays for analysis of gene expression. Methods Enzymol 303 (1999) 179-205
    • (1999) Methods Enzymol , vol.303 , pp. 179-205
    • Eisen, M.B.1    Brown, P.O.2
  • 9
    • 33744730993 scopus 로고    scopus 로고
    • Comparing the shapes of regression functions
    • Heckman N.E., and Zamar R.H. Comparing the shapes of regression functions. Biometrika 22 (2000) 135-144
    • (2000) Biometrika , vol.22 , pp. 135-144
    • Heckman, N.E.1    Zamar, R.H.2
  • 10
    • 33750336303 scopus 로고    scopus 로고
    • Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data
    • He Y., Pan W., and Lin J. Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data. Computational Statistics and Data Analysis 51 2 (2006) 641-658
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.2 , pp. 641-658
    • He, Y.1    Pan, W.2    Lin, J.3
  • 13
    • 13844272104 scopus 로고    scopus 로고
    • Distances of time series components by means of symbolic dynamics
    • Keller K., and Wittfeld K. Distances of time series components by means of symbolic dynamics. International Journal of Bifurcation Chaos 14 (2004) 693-704
    • (2004) International Journal of Bifurcation Chaos , vol.14 , pp. 693-704
    • Keller, K.1    Wittfeld, K.2
  • 14
    • 33750727351 scopus 로고    scopus 로고
    • Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data
    • Kim Y., Kwon S., and Song S.H. Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data. Computational Statistics and Data Analysis 51 3 (2006) 1643-1655
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.3 , pp. 1643-1655
    • Kim, Y.1    Kwon, S.2    Song, S.H.3
  • 15
    • 34547208268 scopus 로고    scopus 로고
    • Use of SVD-based probit transformation in clustering gene expression profiles
    • Liang F. Use of SVD-based probit transformation in clustering gene expression profiles. Computational Statistics and Data Analysis 51 12 (2007) 6355-6366
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.12 , pp. 6355-6366
    • Liang, F.1
  • 16
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • Liao W.T. Clustering of time series data - A survey. Pattern Recognition 38 (2005) 1857-1874
    • (2005) Pattern Recognition , vol.38 , pp. 1857-1874
    • Liao, W.T.1
  • 18
    • 47749085849 scopus 로고    scopus 로고
    • Assessing agreement of clustering methods with gene expression microarray data
    • Liu X., Lee S., Casella G., and Peter G.F. Assessing agreement of clustering methods with gene expression microarray data. Computational Statistics and Data Analysis 52 12 (2008) 5356-5366
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.12 , pp. 5356-5366
    • Liu, X.1    Lee, S.2    Casella, G.3    Peter, G.F.4
  • 20
    • 58549108621 scopus 로고    scopus 로고
    • Oates, T., Firoiou, L., Cohen, P.R., 1999. Clustering time series with Hidden Markov models and dynamic time warping. In: Proceedings of the 6th IJCAI-99, Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, Stockholm, pp. 17-21
    • Oates, T., Firoiou, L., Cohen, P.R., 1999. Clustering time series with Hidden Markov models and dynamic time warping. In: Proceedings of the 6th IJCAI-99, Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, Stockholm, pp. 17-21
  • 21
    • 38149054866 scopus 로고    scopus 로고
    • Classification of gene functions using support vector machine for time-course gene expression data
    • Park C., Koo J., Kim S., Sohn I., and Lee J.W. Classification of gene functions using support vector machine for time-course gene expression data. Computational Statistics and Data Analysis 52 5 (2008) 2578-2587
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.5 , pp. 2578-2587
    • Park, C.1    Koo, J.2    Kim, S.3    Sohn, I.4    Lee, J.W.5
  • 22
    • 0037620663 scopus 로고    scopus 로고
    • Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference
    • Peddada S.D., Lobenhofer L., Li L., Afshari C., Weinberg C., and Umbach D. Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19 (2003) 834-841
    • (2003) Bioinformatics , vol.19 , pp. 834-841
    • Peddada, S.D.1    Lobenhofer, L.2    Li, L.3    Afshari, C.4    Weinberg, C.5    Umbach, D.6
  • 23
    • 34547852214 scopus 로고    scopus 로고
    • Weighted rank aggregation of cluster validation measures: A Monte Carlo cross-entropy approach
    • Pihur V., Datta S., and Datta S. Weighted rank aggregation of cluster validation measures: A Monte Carlo cross-entropy approach. Bioinformatics 23 13 (2007) 1607-1615
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1607-1615
    • Pihur, V.1    Datta, S.2    Datta, S.3
  • 24
    • 34548205979 scopus 로고    scopus 로고
    • Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression
    • Scrucca L. Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression. Computational Statistics and Data Analysis 52 1 (2007) 438-451
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 438-451
    • Scrucca, L.1
  • 27
    • 34548214824 scopus 로고    scopus 로고
    • High-dimensional pseudo-logistic regression and classification with applications to gene expression data
    • Zhang C., Fu H., Jiang Y., and Yu T. High-dimensional pseudo-logistic regression and classification with applications to gene expression data. Computational Statistics and Data Analysis 52 1 (2007) 452-470
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 452-470
    • Zhang, C.1    Fu, H.2    Jiang, Y.3    Yu, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.