-
1
-
-
0031342280
-
A new and improved algorithm for the 3-cut problem
-
Burlet, M., Goldschmidt, O.: A new and improved algorithm for the 3-cut problem. Operations Research Letters 21(5), 225-227 (1997)
-
(1997)
Operations Research Letters
, vol.21
, Issue.5
, pp. 225-227
-
-
Burlet, M.1
Goldschmidt, O.2
-
2
-
-
0028484228
-
The complexity of multiterminal cuts
-
Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864-894 (1994)
-
(1994)
SIAM J. Comput
, vol.23
, Issue.4
, pp. 864-894
-
-
Dahlhaus, E.1
Johnson, D.2
Papadimitriou, C.3
Seymour, P.4
Yannakakis, M.5
-
3
-
-
0032157143
-
Beyond the flow decomposition barrier
-
Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783-797 (1998)
-
(1998)
J. ACM
, vol.45
, Issue.5
, pp. 783-797
-
-
Goldberg, A.V.1
Rao, S.2
-
4
-
-
0024090156
-
A new approach to the maximum-flow problem
-
Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921-940 (1988)
-
(1988)
J. ACM
, vol.35
, Issue.4
, pp. 921-940
-
-
Goldberg, A.V.1
Tarjan, R.E.2
-
5
-
-
0002491487
-
A polynomial algorithm for the k-cut problem for fixed k
-
Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut problem for fixed k. Mathematics of Operations Research 19(1), 24-37 (1994)
-
(1994)
Mathematics of Operations Research
, vol.19
, Issue.1
, pp. 24-37
-
-
Goldschmidt, O.1
Hochbaum, D.2
-
6
-
-
0003165538
-
An improved algorithm for the planar 3-cut problem
-
He, X.: An improved algorithm for the planar 3-cut problem. J. Algorithms 12(1), 23-37 (1991)
-
(1991)
J. Algorithms
, vol.12
, Issue.1
, pp. 23-37
-
-
He, X.1
-
8
-
-
0141991952
-
A divide-and-conquer approach to the minimum k-way cut problem
-
Kamidoi, Y., Wakabayashi, S., Yoshida, N.: A divide-and-conquer approach to the minimum k-way cut problem. Algorithmica 32(2), 262-276 (2002)
-
(2002)
Algorithmica
, vol.32
, Issue.2
, pp. 262-276
-
-
Kamidoi, Y.1
Wakabayashi, S.2
Yoshida, N.3
-
9
-
-
35448986623
-
A deterministic algorithm for finding all minimum k-way cuts
-
Kamidoi, Y., Yoshida, N., Nagamochi, H.: A deterministic algorithm for finding all minimum k-way cuts. SIAM Journal on Computing 36(5), 1329-1341 (2006)
-
(2006)
SIAM Journal on Computing
, vol.36
, Issue.5
, pp. 1329-1341
-
-
Kamidoi, Y.1
Yoshida, N.2
Nagamochi, H.3
-
10
-
-
84947924962
-
-
Kapoor, S.: On minimum 3-cuts and approximating k-cuts using cut trees. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, 1084. Springer, Heidelberg (1996)
-
Kapoor, S.: On minimum 3-cuts and approximating k-cuts using cut trees. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084. Springer, Heidelberg (1996)
-
-
-
-
11
-
-
0030197678
-
A new approach to the minimum cut problem
-
Karger, D.R., Stein, C.: A new approach to the minimum cut problem. Journal of the ACM 43(4), 601-640 (1996)
-
(1996)
Journal of the ACM
, vol.43
, Issue.4
, pp. 601-640
-
-
Karger, D.R.1
Stein, C.2
-
12
-
-
0002659735
-
Computing edge connectivity in multigraphs and capacitated graphs
-
Nagamochi, H., Ibaraki, T.: Computing edge connectivity in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5(1), 54-66 (1992)
-
(1992)
SIAM Journal on Discrete Mathematics
, vol.5
, Issue.1
, pp. 54-66
-
-
Nagamochi, H.1
Ibaraki, T.2
-
13
-
-
4243094422
-
A fast algorithm for computing minimum 3-way and 4-way cuts
-
Nagamochi, H., Ibaraki, T.: A fast algorithm for computing minimum 3-way and 4-way cuts. Mathematical Programming 88(3), 507-520 (2000)
-
(2000)
Mathematical Programming
, vol.88
, Issue.3
, pp. 507-520
-
-
Nagamochi, H.1
Ibaraki, T.2
-
14
-
-
80052921977
-
-
Nagamochi, H., Katayama, S., Ibaraki, T.: A faster algorithm for computing minimum 5-way and 6-way cuts in graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, 1627. Springer, Heidelberg (1999)
-
Nagamochi, H., Katayama, S., Ibaraki, T.: A faster algorithm for computing minimum 5-way and 6-way cuts in graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627. Springer, Heidelberg (1999)
-
-
-
-
15
-
-
0041426088
-
Computing all small cuts in an undirected network
-
Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in an undirected network. SIAM Journal on Discrete Mathematics 10(3), 469-481 (1997)
-
(1997)
SIAM Journal on Discrete Mathematics
, vol.10
, Issue.3
, pp. 469-481
-
-
Nagamochi, H.1
Nishimura, K.2
Ibaraki, T.3
-
18
-
-
0029247508
-
Finding k-cuts within twice the optimal
-
Saran, H., Vazirani, V.V.: Finding k-cuts within twice the optimal. SIAM J. Comput. 24(1), 101-108 (1995)
-
(1995)
SIAM J. Comput
, vol.24
, Issue.1
, pp. 101-108
-
-
Saran, H.1
Vazirani, V.V.2
-
19
-
-
0031176702
-
A simple min-cut algorithm
-
Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585-591 (1997)
-
(1997)
J. ACM
, vol.44
, Issue.4
, pp. 585-591
-
-
Stoer, M.1
Wagner, F.2
-
21
-
-
44649191818
-
Algorithms for multiterminal cuts
-
Hirsch, E.A, Razborov, A.A, Semenov, A, Slissenko, A, eds, Computer Science, Theory and Applications, Springer, Heidelberg
-
Xiao, M.: Algorithms for multiterminal cuts. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science - Theory and Applications. LNCS, vol. 5010. Springer, Heidelberg (2008)
-
(2008)
LNCS
, vol.5010
-
-
Xiao, M.1
-
22
-
-
58549119819
-
-
Xiao, M.: Finding minimum 3-way cuts in hypergraphs. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, 4978. Springer, Heidelberg (2008)
-
Xiao, M.: Finding minimum 3-way cuts in hypergraphs. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978. Springer, Heidelberg (2008)
-
-
-
-
24
-
-
0042378874
-
Approximating the minimum k-way cut in a graph via minimum 3-way cuts
-
Zhao, L., Nagamochi, H., Ibaraki, T.: Approximating the minimum k-way cut in a graph via minimum 3-way cuts. J. Comb. Optim. 5(4), 397-410 (2001)
-
(2001)
J. Comb. Optim
, vol.5
, Issue.4
, pp. 397-410
-
-
Zhao, L.1
Nagamochi, H.2
Ibaraki, T.3
|