메뉴 건너뛰기




Volumn 22, Issue 12, 2008, Pages 2554-2562

Free surface transition and momentum augmentation of liquid flow in Micro/Nano-scale channels with hydrophobic and hydrophilic surfaces

Author keywords

Computational fluid dynamics; Flow instability; Hydrophilic surface; Hydrophobic surface; Micro channel; Molecular dynamics; Nano channel

Indexed keywords


EID: 58449109126     PISSN: 1738494X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s12206-008-0751-8     Document Type: Article
Times cited : (3)

References (23)
  • 1
    • 0034711368 scopus 로고    scopus 로고
    • Nanoelectromechanical Systems
    • H. G. Craighead 2000 Nanoelectromechanical Systems Science 290 1532 1535
    • (2000) Science , vol.290 , pp. 1532-1535
    • Craighead, H.G.1
  • 2
    • 24944498780 scopus 로고    scopus 로고
    • Microfluidics: Fluid physics at the nanoliter scale
    • T. M. Squires S. R. Quake 2005 Microfluidics: Fluid physics at the nanoliter scale Rev. of Modern Phys. 77 977 1026
    • (2005) Rev. of Modern Phys. , vol.77 , pp. 977-1026
    • Squires, T.M.1    Quake, S.R.2
  • 3
    • 0030584607 scopus 로고    scopus 로고
    • A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
    • Y. C. Chang T. Y. Hou B. Merriman S. Osher 1996 A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows J. Comp. Phys. 124 449 464
    • (1996) J. Comp. Phys. , vol.124 , pp. 449-464
    • Chang, Y.C.1    Hou, T.Y.2    Merriman, B.3    Osher, S.4
  • 4
    • 0019367877 scopus 로고
    • Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
    • C. W. Hirt B. D. Nichols 1981 Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries J. Comp. Phys. 39 201 225
    • (1981) J. Comp. Phys. , vol.39 , pp. 201-225
    • Hirt, C.W.1    Nichols, B.D.2
  • 6
    • 0001562467 scopus 로고
    • Molecular Dynamics of Fluid Flow at Solid Surfaces
    • 5
    • J. Koplik J. R. Banavar J. F. Willemsen 1989 Molecular Dynamics of Fluid Flow at Solid Surfaces Phys. Fluids A1 5 781
    • (1989) Phys. Fluids , vol.1 , pp. 781
    • Koplik, J.1    Banavar, J.R.2    Willemsen, J.F.3
  • 7
    • 0030770171 scopus 로고    scopus 로고
    • A General Boundary Condition for Liquid Flow at Solid Surfaces
    • P. A. Thompson S. M. Troian 1997 A General Boundary Condition for Liquid Flow at Solid Surfaces Nature 389 360 362
    • (1997) Nature , vol.389 , pp. 360-362
    • Thompson, P.A.1    Troian, S.M.2
  • 8
    • 0035132493 scopus 로고    scopus 로고
    • Boundary Condition at a Fluid-Solid Interface
    • 5
    • M. Cieplak J. Koplik J. R. Banavar 2001 Boundary Condition at a Fluid-Solid Interface Phys. Rev. Lett. 86 5 803 806
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 803-806
    • Cieplak, M.1    Koplik, J.2    Banavar, J.R.3
  • 9
    • 0034682861 scopus 로고    scopus 로고
    • Formation, Stability, and Breakup of Nanojets
    • M. Moseler U. Landman 2000 Formation, Stability, and Breakup of Nanojets Science 289 1165 1169
    • (2000) Science , vol.289 , pp. 1165-1169
    • Moseler, M.1    Landman, U.2
  • 10
    • 27944460905 scopus 로고    scopus 로고
    • Influence of Thermodynamic State on Nanojet Breakup
    • S. Shin M. Oschwald M. M. Micci W. Yoon 2005 Influence of Thermodynamic State on Nanojet Breakup Nanotechnology 16 2838 2845
    • (2005) Nanotechnology , vol.16 , pp. 2838-2845
    • Shin, S.1    Oschwald, M.2    Micci, M.M.3    Yoon, W.4
  • 11
    • 0242318184 scopus 로고    scopus 로고
    • Effect of Interface Wettability on Microscale Flow by Molecular Dynamic Simulation
    • G. Nagayama P. Cheng 2004 Effect of Interface Wettability on Microscale Flow by Molecular Dynamic Simulation Int. J. Heat and Mass Transfer 47 501 513
    • (2004) Int. J. Heat and Mass Transfer , vol.47 , pp. 501-513
    • Nagayama, G.1    Cheng, P.2
  • 12
    • 0000677145 scopus 로고    scopus 로고
    • Large Slip Effect at a Nonwetting Fluid Solid Interface
    • 23
    • J. L. Barrat L. Bocquet 1999 Large Slip Effect at a Nonwetting Fluid Solid Interface Phys. Rev. Lett. 82 23 4671 4674
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 4671-4674
    • Barrat, J.L.1    Bocquet, L.2
  • 13
    • 7044229807 scopus 로고    scopus 로고
    • Molecular Dynamics Simulation of Liquid Argon Flow at Platinum Surfaces
    • J. L. Xu Z. Q. Zhou 2004 Molecular Dynamics Simulation of Liquid Argon Flow at Platinum Surfaces Heat and Mass Transfer 40 859 869
    • (2004) Heat and Mass Transfer , vol.40 , pp. 859-869
    • Xu, J.L.1    Zhou, Z.Q.2
  • 14
    • 0141568285 scopus 로고    scopus 로고
    • A New Concept in Fabricating Building Blocks for Nanoelectronic and Nanomechanic Devices
    • A. Prinz V. Prinz V. Seleznev 2003 A New Concept in Fabricating Building Blocks for Nanoelectronic and Nanomechanic Devices Microelectron Eng. 69 466 475
    • (2003) Microelectron Eng. , vol.69 , pp. 466-475
    • Prinz, A.1    Prinz, V.2    Seleznev, V.3
  • 20
    • 0001697517 scopus 로고    scopus 로고
    • Poiseuille Flow of Lennard-Jones Fluids in Narrow Slit Pores
    • 4
    • K. P. Travis K.E. Gubbins 2000 Poiseuille Flow of Lennard-Jones Fluids in Narrow Slit Pores J. Chem. Phys. 112 4 1984 1994
    • (2000) J. Chem. Phys. , vol.112 , pp. 1984-1994
    • Travis, K.P.1    Gubbins, K.E.2
  • 21
    • 10844289101 scopus 로고    scopus 로고
    • Molecular Scale Aspects of Liquid Contact on a Solid Surface
    • 6
    • S. Maruyama T. Kimura M. C. Lu 2002 Molecular Scale Aspects of Liquid Contact on a Solid Surface Therm. Sci. Eng. 10 6 23 29
    • (2002) Therm. Sci. Eng. , vol.10 , pp. 23-29
    • Maruyama, S.1    Kimura, T.2    Lu, M.C.3
  • 22
    • 58449098912 scopus 로고    scopus 로고
    • Molecular dynamics simulation and measurement of contact angle of water droplet on a platinum surface
    • S. G. Kandlikar, M. E. Steinke, S. Maruyama and T. Kimura, Molecular Dynamics Simulation and Measurement of Contact Angle of Water Droplet on a Platinum Surface, Proceedings of IMECE'01, (2001).
    • (2001) Proceedings of IMECE'01
    • Kandlikar, S.G.1    Steinke, M.E.2    Maruyama, S.3    Kimura, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.