메뉴 건너뛰기




Volumn 5323 LNAI, Issue , 2008, Pages 1-14

Lazy planning under uncertainty by optimizing decisions on an ensemble of incomplete disturbance trees

Author keywords

Ensemble methods; Stochastic dynamic programming

Indexed keywords

OPTIMIZATION; PROGRAMMING THEORY; RANDOM PROCESSES; REINFORCEMENT; REINFORCEMENT LEARNING; SYSTEMS ENGINEERING; WIRELESS LOCAL AREA NETWORKS (WLAN);

EID: 58449098161     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-89722-4_1     Document Type: Conference Paper
Times cited : (5)

References (27)
  • 2
    • 0033135677 scopus 로고    scopus 로고
    • Model predictive control: Past, present and future
    • Morari, M., Lee, J.: Model predictive control: past, present and future. Computers and Chemical Engineering 23, 667-682 (1999)
    • (1999) Computers and Chemical Engineering , vol.23 , pp. 667-682
    • Morari, M.1    Lee, J.2
  • 7
    • 77950475739 scopus 로고    scopus 로고
    • Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, 10, pp. 483-554. Elsevier, Amsterdam (2003)
    • Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 483-554. Elsevier, Amsterdam (2003)
  • 8
    • 58449108245 scopus 로고    scopus 로고
    • Sequential importance sampling algorithms for dynamic stochastic programming
    • Dempster, M.: Sequential importance sampling algorithms for dynamic stochastic programming. Annals of Operations Research 84, 153-184 (1998)
    • (1998) Annals of Operations Research , vol.84 , pp. 153-184
    • Dempster, M.1
  • 9
    • 77950512601 scopus 로고    scopus 로고
    • Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, 10, pp. 353-425. Elsevier, Amsterdam (2003)
    • Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 353-425. Elsevier, Amsterdam (2003)
  • 10
    • 0035261934 scopus 로고    scopus 로고
    • Generating scenario trees for multistage decision problems
    • Høyland, K., Wallace, S.: Generating scenario trees for multistage decision problems. Management Science 47(2), 295-307 (2001)
    • (2001) Management Science , vol.47 , Issue.2 , pp. 295-307
    • Høyland, K.1    Wallace, S.2
  • 11
    • 33847404432 scopus 로고    scopus 로고
    • Financial scenario generation for stochastic multi-stage decision processes as facility location problems
    • Hochreiter, R., Pflug, G.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annals of Operations Research 152, 257-272 (2007)
    • (2007) Annals of Operations Research , vol.152 , pp. 257-272
    • Hochreiter, R.1    Pflug, G.2
  • 12
    • 0036873891 scopus 로고    scopus 로고
    • Quantitative stability in stochastic programming: The method of probability metrics
    • Rachev, S., Römisch, W.: Quantitative stability in stochastic programming: The method of probability metrics. Mathematics of Operations Research 27(4), 792-818 (2002)
    • (2002) Mathematics of Operations Research , vol.27 , Issue.4 , pp. 792-818
    • Rachev, S.1    Römisch, W.2
  • 14
    • 0030260606 scopus 로고    scopus 로고
    • Robust constrained model predictive control using matrix inequalities
    • Kothare, M., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using matrix inequalities. Automatica 32, 1361-1379 (1996)
    • (1996) Automatica , vol.32 , pp. 1361-1379
    • Kothare, M.1    Balakrishnan, V.2    Morari, M.3
  • 15
    • 44349128988 scopus 로고    scopus 로고
    • Confidence level solutions for stochastic programming
    • Nesterov, Y., Vial, J.P.: Confidence level solutions for stochastic programming. Automatica 44(6), 1559-1568 (2008)
    • (2008) Automatica , vol.44 , Issue.6 , pp. 1559-1568
    • Nesterov, Y.1    Vial, J.P.2
  • 16
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197-227 (1990)
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 19
    • 85156221438 scopus 로고    scopus 로고
    • Generalization in reinforcement learning: Successful examples using sparse coarse coding
    • Sutton, R.: Generalization in reinforcement learning: successful examples using sparse coarse coding. Advances in Neural Information Processing Systems 8, 1038-1044 (1996)
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 1038-1044
    • Sutton, R.1
  • 20
    • 0036832951 scopus 로고    scopus 로고
    • A sparse sampling algorithm for near-optimal planning in large Markov decision processes
    • Kearns, M., Mansour, Y., Ng, A.: A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning 49(2-3), 193-208 (2002)
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 193-208
    • Kearns, M.1    Mansour, Y.2    Ng, A.3
  • 21
    • 33847334846 scopus 로고    scopus 로고
    • The Cross-Entropy Method. A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning
    • Springer, Heidelberg
    • Rubinstein, R., Kroese, D.: The Cross-Entropy Method. A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. In: Information Science and Statistics. Springer, Heidelberg (2004)
    • (2004) Information Science and Statistics
    • Rubinstein, R.1    Kroese, D.2
  • 24
    • 58449124866 scopus 로고    scopus 로고
    • Approximate solution to multistage stochastic programs with ensembles of randomized scenario trees. Master's thesis, University of Liège, Department of Electrical Engineering and Computer Science
    • Defourny, B.: Approximate solution to multistage stochastic programs with ensembles of randomized scenario trees. Master's thesis, University of Liège, Department of Electrical Engineering and Computer Science (2007)
    • (2007)
    • Defourny, B.1
  • 26
    • 85012688561 scopus 로고
    • Princeton University Press, Princeton
    • Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
    • (1957) Dynamic Programming
    • Bellman, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.