-
2
-
-
0033135677
-
Model predictive control: Past, present and future
-
Morari, M., Lee, J.: Model predictive control: past, present and future. Computers and Chemical Engineering 23, 667-682 (1999)
-
(1999)
Computers and Chemical Engineering
, vol.23
, pp. 667-682
-
-
Morari, M.1
Lee, J.2
-
5
-
-
0030362553
-
Lazy decision trees
-
Friedman, J., Kohavi, R., Yun, Y.: Lazy decision trees. In: Proc. of 13th National Conference on Artificial Intelligence, AAAI 1996. Part l(of 2), pp. 717-724 (1996)
-
(1996)
Proc. of 13th National Conference on Artificial Intelligence, AAAI 1996. Part l(of
, vol.2
, pp. 717-724
-
-
Friedman, J.1
Kohavi, R.2
Yun, Y.3
-
6
-
-
34047209909
-
Stability of multistage stochastic programs
-
Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. SIAM Journal on Optimization 17(2), 511-525 (2006)
-
(2006)
SIAM Journal on Optimization
, vol.17
, Issue.2
, pp. 511-525
-
-
Heitsch, H.1
Römisch, W.2
Strugarek, C.3
-
7
-
-
77950475739
-
-
Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, 10, pp. 483-554. Elsevier, Amsterdam (2003)
-
Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 483-554. Elsevier, Amsterdam (2003)
-
-
-
-
8
-
-
58449108245
-
Sequential importance sampling algorithms for dynamic stochastic programming
-
Dempster, M.: Sequential importance sampling algorithms for dynamic stochastic programming. Annals of Operations Research 84, 153-184 (1998)
-
(1998)
Annals of Operations Research
, vol.84
, pp. 153-184
-
-
Dempster, M.1
-
9
-
-
77950512601
-
-
Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, 10, pp. 353-425. Elsevier, Amsterdam (2003)
-
Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 353-425. Elsevier, Amsterdam (2003)
-
-
-
-
10
-
-
0035261934
-
Generating scenario trees for multistage decision problems
-
Høyland, K., Wallace, S.: Generating scenario trees for multistage decision problems. Management Science 47(2), 295-307 (2001)
-
(2001)
Management Science
, vol.47
, Issue.2
, pp. 295-307
-
-
Høyland, K.1
Wallace, S.2
-
11
-
-
33847404432
-
Financial scenario generation for stochastic multi-stage decision processes as facility location problems
-
Hochreiter, R., Pflug, G.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annals of Operations Research 152, 257-272 (2007)
-
(2007)
Annals of Operations Research
, vol.152
, pp. 257-272
-
-
Hochreiter, R.1
Pflug, G.2
-
12
-
-
0036873891
-
Quantitative stability in stochastic programming: The method of probability metrics
-
Rachev, S., Römisch, W.: Quantitative stability in stochastic programming: The method of probability metrics. Mathematics of Operations Research 27(4), 792-818 (2002)
-
(2002)
Mathematics of Operations Research
, vol.27
, Issue.4
, pp. 792-818
-
-
Rachev, S.1
Römisch, W.2
-
13
-
-
64049106701
-
Reinforcement learning versus model predictive control: A comparison on a power system problem
-
to appear
-
Ernst, D., Glavic, M., Capitanescu, F., Wehenkel, L.: Reinforcement learning versus model predictive control: a comparison on a power system problem. IEEE Transactions on Systems. Man and Cybernetics - Part B (to appear, 2008)
-
(2008)
IEEE Transactions on Systems. Man and Cybernetics - Part B
-
-
Ernst, D.1
Glavic, M.2
Capitanescu, F.3
Wehenkel, L.4
-
14
-
-
0030260606
-
Robust constrained model predictive control using matrix inequalities
-
Kothare, M., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using matrix inequalities. Automatica 32, 1361-1379 (1996)
-
(1996)
Automatica
, vol.32
, pp. 1361-1379
-
-
Kothare, M.1
Balakrishnan, V.2
Morari, M.3
-
15
-
-
44349128988
-
Confidence level solutions for stochastic programming
-
Nesterov, Y., Vial, J.P.: Confidence level solutions for stochastic programming. Automatica 44(6), 1559-1568 (2008)
-
(2008)
Automatica
, vol.44
, Issue.6
, pp. 1559-1568
-
-
Nesterov, Y.1
Vial, J.P.2
-
16
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197-227 (1990)
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
17
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
18
-
-
21844465127
-
Tree-based batch mode reinforcement learning
-
Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal of Machine Learning Research 6, 503-556 (2005)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 503-556
-
-
Ernst, D.1
Geurts, P.2
Wehenkel, L.3
-
19
-
-
85156221438
-
Generalization in reinforcement learning: Successful examples using sparse coarse coding
-
Sutton, R.: Generalization in reinforcement learning: successful examples using sparse coarse coding. Advances in Neural Information Processing Systems 8, 1038-1044 (1996)
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 1038-1044
-
-
Sutton, R.1
-
20
-
-
0036832951
-
A sparse sampling algorithm for near-optimal planning in large Markov decision processes
-
Kearns, M., Mansour, Y., Ng, A.: A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning 49(2-3), 193-208 (2002)
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 193-208
-
-
Kearns, M.1
Mansour, Y.2
Ng, A.3
-
21
-
-
33847334846
-
The Cross-Entropy Method. A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning
-
Springer, Heidelberg
-
Rubinstein, R., Kroese, D.: The Cross-Entropy Method. A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. In: Information Science and Statistics. Springer, Heidelberg (2004)
-
(2004)
Information Science and Statistics
-
-
Rubinstein, R.1
Kroese, D.2
-
22
-
-
0028564629
-
Acting optimally in partially observable stochastic domains
-
Seattle, Washington, USA, AAAI Press/MIT Press, Menlo Park
-
Cassandra. A., Kaelbling, L., Littman, M.: Acting optimally in partially observable stochastic domains. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), Seattle, Washington, USA, vol. 2, pp. 1023-1028. AAAI Press/MIT Press, Menlo Park (1994)
-
(1994)
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI
, vol.2
, pp. 1023-1028
-
-
Cassandra, A.1
Kaelbling, L.2
Littman, M.3
-
24
-
-
58449124866
-
-
Approximate solution to multistage stochastic programs with ensembles of randomized scenario trees. Master's thesis, University of Liège, Department of Electrical Engineering and Computer Science
-
Defourny, B.: Approximate solution to multistage stochastic programs with ensembles of randomized scenario trees. Master's thesis, University of Liège, Department of Electrical Engineering and Computer Science (2007)
-
(2007)
-
-
Defourny, B.1
-
26
-
-
85012688561
-
-
Princeton University Press, Princeton
-
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
-
(1957)
Dynamic Programming
-
-
Bellman, R.1
-
27
-
-
84898939480
-
Policy gradient methods for reinforcement learning with function approximation
-
Sutton, R., McAUester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. Advances in Neural Information Processing Systems 12, 1057-1063 (2000)
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 1057-1063
-
-
Sutton, R.1
McAUester, D.2
Singh, S.3
Mansour, Y.4
|