-
1
-
-
0002130015
-
On invariant hypersurfaces of strongly monotone maps
-
Benai¨m, M., 1997. On invariant hypersurfaces of strongly monotone maps. J. Differ. Equ., 137:302–319.
-
(1997)
J. Differ. Equ.
, vol.137
, pp. 302-319
-
-
Benai¨m, M.1
-
3
-
-
21844509507
-
Regions in the complex plane containing the eigenvalues of a matrix
-
Brualdi, R., and Mellendorf, S., 1994. Regions in the complex plane containing the eigenvalues of a matrix. Amer. Math. Monthly, 101:975–985.
-
(1994)
Amer. Math. Monthly
, vol.101
, pp. 975-985
-
-
Brualdi, R.1
Mellendorf, S.2
-
4
-
-
0020970741
-
Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
-
Cohen, M., and Grossberg, S., 1983. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern., 13:815–826.
-
(1983)
IEEE Trans. Syst. Man Cybern.
, vol.13
, pp. 815-826
-
-
Cohen, M.1
Grossberg, S.2
-
5
-
-
8744244403
-
Some discrete competition models and the competitive exclusion principle
-
Cushing, J., 2004. Some discrete competition models and the competitive exclusion principle. J. Differ. Equ. Appl., 10 (13–15):1139–1151.
-
(2004)
J. Differ. Equ. Appl.
, vol.10
, Issue.13-15
, pp. 1139-1151
-
-
Cushing, J.1
-
6
-
-
0000028620
-
Competition, decision and consensus
-
Grossberg, S., 1978. Competition, decision and consensus. J. Math. Anal. Appl., 66:470–493.
-
(1978)
J. Math. Anal. Appl.
, vol.66
, pp. 470-493
-
-
Grossberg, S.1
-
7
-
-
27644506636
-
A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So
-
Gyllenberg, M., Yan, P., and Wang, Y., 2006. A 3D competitive Lotka-Volterra system with three limit cycles:A falsification of a conjecture by Hofbauer and So. Appl. Math. Lett., 19:1–7.
-
(2006)
Appl. Math. Lett.
, vol.19
, pp. 1-7
-
-
Gyllenberg, M.1
Yan, P.2
Wang, Y.3
-
8
-
-
0021071835
-
Competition for fluctuating nutrient
-
Hale, J., and Somolinos, A., 1983. Competition for fluctuating nutrient. J. Math. Biol., 18:255–280.
-
(1983)
J. Math. Biol.
, vol.18
, pp. 255-280
-
-
Hale, J.1
Somolinos, A.2
-
11
-
-
21144459956
-
Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems
-
Hess, P., and Poláčik, P., 1993. Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems. SIAM J. Math. Anal., 24:1312–1330.
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 1312-1330
-
-
Hess, P.1
Poláčik, P.2
-
12
-
-
84956106116
-
Systems of differential equations which are competitive or cooperative. III: Competing species
-
Hirsch, M. W., 1988. Systems of differential equations which are competitive or cooperative. III:Competing species. Nonlinearity, 1:51–71.
-
(1988)
Nonlinearity
, vol.1
, pp. 51-71
-
-
Hirsch, M.W.1
-
13
-
-
0024909476
-
Convergent activation dynamics in continuous time neural networks
-
Hirsch, M. W., 1989. Convergent activation dynamics in continuous time neural networks. Neural Netw., 2:331–351.
-
(1989)
Neural Netw.
, vol.2
, pp. 331-351
-
-
Hirsch, M.W.1
-
14
-
-
33644516512
-
-
Cañada A., Drábek P., Fonda A., (eds), Elsevier, Boston
-
Hirsch, M. W., and Smith, H., 2005. “ Monotone dynamical systems, in Handbook of Differential Equations:Ordinary Differential Equations ”. Edited by:Cañada, A., Drábek, P., and Fonda, A., Vol. 2, Elsevier, Boston
-
(2005)
Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations
, vol.2
-
-
Hirsch, M.W.1
Smith, H.2
-
15
-
-
43949156327
-
Multiple limit cycles for three dimensional competitive Lotka-Volterra equations
-
Hofbauer, J., and So, J. W.-H., 1994. Multiple limit cycles for three dimensional competitive Lotka-Volterra equations. Appl. Math. Lett., 7:65–70.
-
(1994)
Appl. Math. Lett.
, vol.7
, pp. 65-70
-
-
Hofbauer, J.1
So, J.W.H.2
-
16
-
-
0042178203
-
The properties of a stochastic model for two competing species
-
Leslie, P., and Gower, J., 1958. The properties of a stochastic model for two competing species. Biometrika, 45:316–330.
-
(1958)
Biometrika
, vol.45
, pp. 316-330
-
-
Leslie, P.1
Gower, J.2
-
17
-
-
85024505845
-
Introduction to Neural and Cognitive Modeling
-
Mahwah
-
Levine, D., 2000. “ Introduction to Neural and Cognitive Modeling ”. In Lawrence Erlbaum Associates Mahwah
-
(2000)
Lawrence Erlbaum Associates
-
-
Levine, D.1
-
18
-
-
0036630612
-
Two limit cycles in three-dimensional Lotka-Volterra systems
-
Lu, Z., and Luo, Y., 2002. Two limit cycles in three-dimensional Lotka-Volterra systems. Comput. Math. Appl., 44:51–66.
-
(2002)
Comput. Math. Appl.
, vol.44
, pp. 51-66
-
-
Lu, Z.1
Luo, Y.2
-
19
-
-
0000336301
-
Bifurcations and dynamic complexity in simple ecological models
-
May, R., and Oster, G., 1976. Bifurcations and dynamic complexity in simple ecological models. Amer. Naturalist, 110:573–599.
-
(1976)
Amer. Naturalist
, vol.110
, pp. 573-599
-
-
May, R.1
Oster, G.2
-
20
-
-
4243841547
-
1 property of carrying simplices for a class of competitive systems of ODEs
-
1 property of carrying simplices for a class of competitive systems of ODEs. J. Differ. Equ., 111:385–409.
-
(1994)
J. Differ. Equ.
, vol.111
, pp. 385-409
-
-
Mierczyński, J.1
-
21
-
-
22444453004
-
On smoothness of carrying simplices
-
Mierczyński, J., 1999. On smoothness of carrying simplices. Proc. Amer. Math. Soc., 127 (2):543–551.
-
(1999)
Proc. Amer. Math. Soc.
, vol.127
, Issue.2
, pp. 543-551
-
-
Mierczyński, J.1
-
22
-
-
0013209211
-
On peaks in carrying simplices
-
Mierczyński, J., 1999. On peaks in carrying simplices. Colloq. Math., 91:285–292.
-
(1999)
Colloq. Math.
, vol.91
, pp. 285-292
-
-
Mierczyński, J.1
-
23
-
-
0013262816
-
Smoothness of carrying simplices for three-dimensional competitive systems: A counterexample
-
Mierczyński, J., 1999. Smoothness of carrying simplices for three-dimensional competitive systems:A counterexample. Dynam. Contin. Discrete Impuls. Systems, 6:147–154.
-
(1999)
Dynam. Contin. Discrete Impuls. Systems
, vol.6
, pp. 147-154
-
-
Mierczyński, J.1
-
24
-
-
0019495964
-
Competition systems with periodic coefficients: A geometric approach
-
de Mottoni, P., and Schiaffino, A., 1981. Competition systems with periodic coefficients:A geometric approach. J. Math. Biol., 11 (3):319–335.
-
(1981)
J. Math. Biol.
, vol.11
, Issue.3
, pp. 319-335
-
-
de Mottoni, P.1
Schiaffino, A.2
-
25
-
-
38249038749
-
Periodic competitive differential equations and the discrete dynamics of competitive maps
-
Smith, H., 1986. Periodic competitive differential equations and the discrete dynamics of competitive maps. J. Differ. Equ., 64 (2):165–194.
-
(1986)
J. Differ. Equ.
, vol.64
, Issue.2
, pp. 165-194
-
-
Smith, H.1
-
26
-
-
0032000798
-
Three-dimensional competitive Lotka-Volterra systems with no periodic orbits
-
van den Driessche, P., and Zeeman, M. L., 1998. Three-dimensional competitive Lotka-Volterra systems with no periodic orbits. SIAM J. Appl. Math., 58:227–234.
-
(1998)
SIAM J. Appl. Math.
, vol.58
, pp. 227-234
-
-
van den Driessche, P.1
Zeeman, M.L.2
-
27
-
-
17744370106
-
Disease induced oscillations between two competing species
-
(electronic)
-
van den Driessche, P., and Zeeman, M. L., 2004. Disease induced oscillations between two competing species. SIAM J. Applied Dyn. Sys., 3:604–619. (electronic)
-
(2004)
SIAM J. Applied Dyn. Sys.
, vol.3
, pp. 604-619
-
-
van den Driessche, P.1
Zeeman, M.L.2
-
28
-
-
0037059089
-
Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems
-
Wang, Y., and Jiang, J., 2002. Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems. J. Differ. Equ., 186:611–632.
-
(2002)
J. Differ. Equ.
, vol.186
, pp. 611-632
-
-
Wang, Y.1
Jiang, J.2
-
29
-
-
84968514083
-
Smoothing derivatives of functions and applications
-
Wilson, F. W., 1969. Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc., 139:413–428.
-
(1969)
Trans. Amer. Math. Soc.
, vol.139
, pp. 413-428
-
-
Wilson, F.W.1
-
30
-
-
0002380465
-
Limit cycles for the competitive three dimensional Lotka–Volterra systems
-
Xiao, D., and Li, W., 2000. Limit cycles for the competitive three dimensional Lotka–Volterra systems. J. Differ. Equ., 164:1–15.
-
(2000)
J. Differ. Equ.
, vol.164
, pp. 1-15
-
-
Xiao, D.1
Li, W.2
-
31
-
-
0042035646
-
Classification of quadratic carrying simplices in two-dimensional competitive Lotka-Volterra systems
-
Zeeman, E. C., 2002. Classification of quadratic carrying simplices in two-dimensional competitive Lotka-Volterra systems. Nonlinearity, 15:1993–2018.
-
(2002)
Nonlinearity
, vol.15
, pp. 1993-2018
-
-
Zeeman, E.C.1
-
32
-
-
85024587376
-
-
personal communication
-
Zeeman, M. L., 1995. personal communication
-
(1995)
-
-
Zeeman, M.L.1
-
33
-
-
0027796995
-
Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems
-
personal communication
-
Zeeman, M. L., 1993. Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems. Dyn. Stab. Syst., 8:189–217. personal communication
-
(1993)
Dyn. Stab. Syst.
, vol.8
, pp. 189-217
-
-
Zeeman, M.L.1
-
34
-
-
85024578925
-
-
personal communication
-
Zeeman, M. L., personal communicationhttp://www.bowdoin.edu/faculty/m/mlzeeman/index.shtml
-
-
-
Zeeman, M.L.1
-
35
-
-
0001209290
-
-
New York: Dekker
-
Zeeman, E. C., and Zeeman, M. L., 1994. “ On the convexity of carrying simplices in competitive Lotka-Volterra systems, Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math ”. Vol. 152, 353–364. New York:Dekker.
-
(1994)
On the convexity of carrying simplices in competitive Lotka-Volterra systems, Differential Equations, Dynamical Systems, and Control Science, Lecture Notes in Pure and Appl. Math
, vol.152
, pp. 353-364
-
-
Zeeman, E.C.1
Zeeman, M.L.2
-
36
-
-
0042035645
-
An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex
-
Zeeman, E. C., and Zeeman, M. L., 2002. An n-dimensional competitive Lotka-Volterra system is generically determined by the edges of its carrying simplex. Nonlinearity, 15:2019–2032.
-
(2002)
Nonlinearity
, vol.15
, pp. 2019-2032
-
-
Zeeman, E.C.1
Zeeman, M.L.2
-
37
-
-
0037322824
-
From local to global behavior in competitive Lotka-Volterra systems
-
(electronic)
-
Zeeman, E. C., and Zeeman, M. L., 2003. From local to global behavior in competitive Lotka-Volterra systems. Trans. Amer. Math. Soc., 355:713–734. (electronic)
-
(2003)
Trans. Amer. Math. Soc.
, vol.355
, pp. 713-734
-
-
Zeeman, E.C.1
Zeeman, M.L.2
|