메뉴 건너뛰기




Volumn 36, Issue 3 PART 1, 2009, Pages 4680-4687

Some issues about outlier detection in rough set theory

Author keywords

Distance metric; KDD; Outlier detection; Rough sets

Indexed keywords

COMPUTATION THEORY; COMPUTER CRIME; INTRUSION DETECTION; OBJECT DETECTION; SOFT COMPUTING; STATISTICS;

EID: 58349088297     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.06.019     Document Type: Article
Times cited : (65)

References (35)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Aggarwal, C. C., Yu, P. S. (2001). Outlier detection for high dimensional data. In Proceedings of the 2001 ACM SIGMOD international conference on managment of data, California (pp. 37-46).
    • Aggarwal, C. C., Yu, P. S. (2001). Outlier detection for high dimensional data. In Proceedings of the 2001 ACM SIGMOD international conference on managment of data, California (pp. 37-46).
  • 2
    • 58349107397 scopus 로고    scopus 로고
    • Arning, A., Agrawal, R., Raghavan, P. (1996). A linear method for deviation detection in large databases. In Proceedings of the 2nd international conference on KDD, Oregon (pp. 164-169).
    • Arning, A., Agrawal, R., Raghavan, P. (1996). A linear method for deviation detection in large databases. In Proceedings of the 2nd international conference on KDD, Oregon (pp. 164-169).
  • 3
    • 58349087111 scopus 로고    scopus 로고
    • Bay, S. D. (1999). The UCI KDD repository. .
    • Bay, S. D. (1999). The UCI KDD repository. .
  • 4
    • 77952380096 scopus 로고    scopus 로고
    • Bay, S. D., Schwabacher, M. (2003). Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In Proceedings of the 9th ACM SIGKDD international conference on KDD, Washington (pp. 29-38).
    • Bay, S. D., Schwabacher, M. (2003). Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In Proceedings of the 9th ACM SIGKDD international conference on KDD, Washington (pp. 29-38).
  • 5
    • 84942847119 scopus 로고    scopus 로고
    • Bazan, J., Osmolski, A., Skowron, A., Slezak, D., Szczuka, M., Wroblewski, J. (2002). Rough set approach to survival analysis. In Proceedings of the 3rd international conference on rough sets and current trends in computing (RSCTC2002), Malvern, PA, USA (pp. 522-529).
    • Bazan, J., Osmolski, A., Skowron, A., Slezak, D., Szczuka, M., Wroblewski, J. (2002). Rough set approach to survival analysis. In Proceedings of the 3rd international conference on rough sets and current trends in computing (RSCTC2002), Malvern, PA, USA (pp. 522-529).
  • 6
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review (with discussion)
    • Bolton R.J., and Hand D.J. Statistical fraud detection: A review (with discussion). Statistical Science 17 3 (2002) 235-255
    • (2002) Statistical Science , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.J.1    Hand, D.J.2
  • 7
    • 0039253819 scopus 로고    scopus 로고
    • Breunig, M. M., Kriegel, H. -P., Ng, R. T., Sander, J. (2000). LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas (pp. 93-104).
    • Breunig, M. M., Kriegel, H. -P., Ng, R. T., Sander, J. (2000). LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas (pp. 93-104).
  • 8
    • 2442536791 scopus 로고    scopus 로고
    • Dissimilarity learning for nominal data
    • Cheng V., Li C.H., Kwok J., and Li C.K. Dissimilarity learning for nominal data. Pattern Recognition 37 7 (2004) 1471-1477
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1471-1477
    • Cheng, V.1    Li, C.H.2    Kwok, J.3    Li, C.K.4
  • 9
    • 84879085576 scopus 로고    scopus 로고
    • Chiu, A. L., Fu, A. W. (2003). Enhancements on local outlier detection. In Proceedings of the 7th international database engineering and applications symposium (IDEAS'03), Hong Kong (pp. 298-307).
    • Chiu, A. L., Fu, A. W. (2003). Enhancements on local outlier detection. In Proceedings of the 7th international database engineering and applications symposium (IDEAS'03), Hong Kong (pp. 298-307).
  • 10
    • 4143149628 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • Barbar D., et al. (Ed), Kluwer Academic Publishers, Boston
    • Eskin E., Arnold A., Prerau M., Portnoy L., and Stolfo S. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In: Barbar D., et al. (Ed). Data mining for security applications (2002), Kluwer Academic Publishers, Boston
    • (2002) Data mining for security applications
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.5
  • 11
    • 33747044600 scopus 로고
    • Metric and Euclidean properties of dissimilarity coefficients
    • Gower J.C., and Legendre P. Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3 (1986) 5-48
    • (1986) Journal of Classification , vol.3 , pp. 5-48
    • Gower, J.C.1    Legendre, P.2
  • 13
    • 84864859588 scopus 로고    scopus 로고
    • Harkins, S., He, H. X., Willams, G. J., Baxter, R. A. (2002). Outlier detection using replicator neural networks. In Proceedings of the 4th international conference on data warehousing and knowledge discovery, France (pp. 170-180).
    • Harkins, S., He, H. X., Willams, G. J., Baxter, R. A. (2002). Outlier detection using replicator neural networks. In Proceedings of the 4th international conference on data warehousing and knowledge discovery, France (pp. 170-180).
  • 15
    • 27144543595 scopus 로고    scopus 로고
    • He, Z. Y., Deng, S. C., Xu, X. F. (2005). An optimization model for outlier detection in categorical data. In Advances in intelligent computing, international conference on intelligent computing, ICIC(1) 2005, Hefei, China (pp. 400-409).
    • He, Z. Y., Deng, S. C., Xu, X. F. (2005). An optimization model for outlier detection in categorical data. In Advances in intelligent computing, international conference on intelligent computing, ICIC(1) 2005, Hefei, China (pp. 400-409).
  • 17
    • 58349114998 scopus 로고    scopus 로고
    • Johnson, T., Kwok, I., Ng, R. T. (1998). Fast computation of 2-dimensional depth contours. In Proceedings of the 4th international conference on knowledge discovery and data mining, New York (pp. 224-228).
    • Johnson, T., Kwok, I., Ng, R. T. (1998). Fast computation of 2-dimensional depth contours. In Proceedings of the 4th international conference on knowledge discovery and data mining, New York (pp. 224-228).
  • 18
    • 58349088869 scopus 로고    scopus 로고
    • Knorr, E., Ng, R. (1998). Algorithms for mining distance-based outliers in large datasets. In Proceedings of the 24th VLDB conference, New York, pp. 392-403.
    • Knorr, E., Ng, R. (1998). Algorithms for mining distance-based outliers in large datasets. In Proceedings of the 24th VLDB conference, New York, pp. 392-403.
  • 19
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • Knorr E., Ng R., and Tucakov V. Distance-based outliers: Algorithms and applications. VLDB Journal: Very Large Databases 8 3-4 (2000) 237-253
    • (2000) VLDB Journal: Very Large Databases , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.1    Ng, R.2    Tucakov, V.3
  • 20
    • 58349084012 scopus 로고    scopus 로고
    • Kovács, L., Vass, D., Vidács, A. (2004). Improving quality of service parameter prediction with preliminary outlier detection and elimination. In Proceedings of the 2nd international workshop on inter-domain performance and simulation (IPS 2004), Budapest (pp. 194-199).
    • Kovács, L., Vass, D., Vidács, A. (2004). Improving quality of service parameter prediction with preliminary outlier detection and elimination. In Proceedings of the 2nd international workshop on inter-domain performance and simulation (IPS 2004), Budapest (pp. 194-199).
  • 22
    • 0038415957 scopus 로고    scopus 로고
    • Li, M., Chen, X., Li, X., Ma, B., Vitnyi, M. B. (2003). The similarity metric. In Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms, Maryland (pp. 863-872).
    • Li, M., Chen, X., Li, X., Ma, B., Vitnyi, M. B. (2003). The similarity metric. In Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms, Maryland (pp. 863-872).
  • 23
    • 58349118372 scopus 로고    scopus 로고
    • Nguyen, S. H., Nguyen, H. S. (1996). Some efficient algorithms for rough set methods. In Proceedings of the 6th international conference on information processing and management of uncertainty (IPMU'96), Granada, Spain (pp. 1451-1456).
    • Nguyen, S. H., Nguyen, H. S. (1996). Some efficient algorithms for rough set methods. In Proceedings of the 6th international conference on information processing and management of uncertainty (IPMU'96), Granada, Spain (pp. 1451-1456).
  • 27
    • 0039845384 scopus 로고    scopus 로고
    • Ramaswamy, S., Rastogi, R., Shim, K. (2000). Efficient algorithms for mining outliers from large datasets. In Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas (pp. 427-438).
    • Ramaswamy, S., Rastogi, R., Shim, K. (2000). Efficient algorithms for mining outliers from large datasets. In Proceedings of the 2000 ACM SIGMOD international conference on management of data, Dallas (pp. 427-438).
  • 29
    • 58349109181 scopus 로고    scopus 로고
    • Rulequest Research. GritBot. see .
    • Rulequest Research. GritBot. see .
  • 32
    • 0022909661 scopus 로고
    • Towards memory-based reasoning
    • Stanfill C., and Waltz D. Towards memory-based reasoning. Communications of the ACM 29 12 (1986) 1213-1228
    • (1986) Communications of the ACM , vol.29 , Issue.12 , pp. 1213-1228
    • Stanfill, C.1    Waltz, D.2
  • 33
    • 27144452309 scopus 로고    scopus 로고
    • Willams, G. J., Baxter, R. A., He, H. X., Harkins, S., Gu, L. F. (2002). A comparative study of RNN for outlier detection in data mining. In ICDM, Japan (pp. 709-712).
    • Willams, G. J., Baxter, R. A., He, H. X., Harkins, S., Gu, L. F. (2002). A comparative study of RNN for outlier detection in data mining. In ICDM, Japan (pp. 709-712).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.