메뉴 건너뛰기




Volumn 36, Issue 3 PART 2, 2009, Pages 6645-6653

A collaborative anti-spam system

Author keywords

Reinforcement learning; Rough Set theory; Spam mail

Indexed keywords

ELECTRONIC MAIL FILTERS; GENETIC ALGORITHMS; REINFORCEMENT LEARNING;

EID: 58349085716     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.08.075     Document Type: Article
Times cited : (20)

References (17)
  • 1
    • 58349094839 scopus 로고    scopus 로고
    • Carreras, X., & Marquez, L. (2001). Boosting trees for anti-spam email filtering. In Fourth international conference on recent advances in natural language processing.
    • Carreras, X., & Marquez, L. (2001). Boosting trees for anti-spam email filtering. In Fourth international conference on recent advances in natural language processing.
  • 2
    • 84958054115 scopus 로고    scopus 로고
    • Chouchoulas, A. (2004). A rough set-based approach to text classification. In Lecture notes in computer science (Vol. 1711, pp. 118-127).
    • Chouchoulas, A. (2004). A rough set-based approach to text classification. In Lecture notes in computer science (Vol. 1711, pp. 118-127).
  • 3
    • 84945194999 scopus 로고    scopus 로고
    • Clark, J., Koprinska, I., & Poon, J. (2003). A neural network based approach to automated e-mail classification. In IEEE/WIC international conference on web intelligence (pp. 702-705).
    • Clark, J., Koprinska, I., & Poon, J. (2003). A neural network based approach to automated e-mail classification. In IEEE/WIC international conference on web intelligence (pp. 702-705).
  • 6
    • 0036040906 scopus 로고    scopus 로고
    • Hidalgo, J. (2002). Evaluating cost-sensitive unsolicited bulk email categorization. In Proceedings of the 2002 ACM symposium on applied computing (pp. 615-620).
    • Hidalgo, J. (2002). Evaluating cost-sensitive unsolicited bulk email categorization. In Proceedings of the 2002 ACM symposium on applied computing (pp. 615-620).
  • 7
    • 58349098244 scopus 로고    scopus 로고
    • Katirai, H. (1999). Filtering junk e-mail: A performance comparison between genetic programming and Naive Bayes. Technical report, Available: .
    • Katirai, H. (1999). Filtering junk e-mail: A performance comparison between genetic programming and Naive Bayes. Technical report, Available: .
  • 8
    • 0012278457 scopus 로고    scopus 로고
    • Kunlun, L., & Houkuan, H. (2002). An architecture of active learning SVMs for spam. In Sixth international conference on signal processing (Vol. 2, pp. 1247-1250).
    • Kunlun, L., & Houkuan, H. (2002). An architecture of active learning SVMs for spam. In Sixth international conference on signal processing (Vol. 2, pp. 1247-1250).
  • 9
    • 0036851028 scopus 로고    scopus 로고
    • Rough sets and intelligent data analysis
    • Pawlak Z. Rough sets and intelligent data analysis. Information Sciences 147 1-4 (2002) 1-12
    • (2002) Information Sciences , vol.147 , Issue.1-4 , pp. 1-12
    • Pawlak, Z.1
  • 10
    • 58349119254 scopus 로고    scopus 로고
    • Rosetta. (2001). .
    • Rosetta. (2001). .
  • 11
    • 58349121123 scopus 로고    scopus 로고
    • Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to filtering junk e-mail. In Proceedings of workshop on learning for text categorization.
    • Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to filtering junk e-mail. In Proceedings of workshop on learning for text categorization.
  • 12
    • 84956853339 scopus 로고    scopus 로고
    • Skowron, A., & Son, N. (1999). Boolean reasoning scheme with some applications in data mining. In Proceedings of the third European conference on principles of data mining and knowledge discovery (pp. 107-115).
    • Skowron, A., & Son, N. (1999). Boolean reasoning scheme with some applications in data mining. In Proceedings of the third European conference on principles of data mining and knowledge discovery (pp. 107-115).
  • 14
    • 84943389252 scopus 로고    scopus 로고
    • Woitaszek, M., Shaaban, M., & Czernikowski, R. (2003). Identifying junk electronic mail in Microsoft outlook with a support vector machine. In Symposium on applications and the internet (pp. 66-169).
    • Woitaszek, M., Shaaban, M., & Czernikowski, R. (2003). Identifying junk electronic mail in Microsoft outlook with a support vector machine. In Symposium on applications and the internet (pp. 66-169).
  • 15
    • 58349101421 scopus 로고    scopus 로고
    • Wrblewski, J. (1995). Finding minimal reducts using genetic algorithms. In Proceeding of the second annual joint conference on information sciences (pp. 186-189).
    • Wrblewski, J. (1995). Finding minimal reducts using genetic algorithms. In Proceeding of the second annual joint conference on information sciences (pp. 186-189).
  • 16
    • 33745698242 scopus 로고    scopus 로고
    • Zhao, W., & Zhang, Z. (2005). An email classification model based on rough set theory. In Proceedings of the international conference on active media technology (pp. 403-408).
    • Zhao, W., & Zhang, Z. (2005). An email classification model based on rough set theory. In Proceedings of the international conference on active media technology (pp. 403-408).
  • 17
    • 58349084383 scopus 로고    scopus 로고
    • An email classification scheme based on decision-theoretic rough set theory and analysis of email security
    • Zhao W., and Zhu Y. An email classification scheme based on decision-theoretic rough set theory and analysis of email security. IEEE TENCON (2005) 1-6
    • (2005) IEEE TENCON , pp. 1-6
    • Zhao, W.1    Zhu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.