메뉴 건너뛰기




Volumn 36, Issue 3 PART 1, 2009, Pages 5353-5361

Two-way cooperative prediction for collaborative filtering recommendations

Author keywords

Collaborative filtering; Cooperation; Ensemble; Recommender systems

Indexed keywords

FORECASTING; MATRIX ALGEBRA; NUMERICAL METHODS; RECOMMENDER SYSTEMS;

EID: 58349083876     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.06.106     Document Type: Article
Times cited : (43)

References (13)
  • 1
    • 58349113548 scopus 로고    scopus 로고
    • Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering, Microsoft research technical report, MSR-TR-98-12.
    • Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering, Microsoft research technical report, MSR-TR-98-12.
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • Goldberg D., Nichols D., Oki B., and Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM 35 12 (1992) 61-70
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.3    Terry, D.4
  • 8
    • 24144432106 scopus 로고    scopus 로고
    • Classification-based collaborative filtering using market basket data
    • Lee J.-S., Jun C.-H., Lee J., and Kim S. Classification-based collaborative filtering using market basket data. Expert Systems with Applications 29 3 (2005) 700-704
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 700-704
    • Lee, J.-S.1    Jun, C.-H.2    Lee, J.3    Kim, S.4
  • 9
    • 0036932094 scopus 로고    scopus 로고
    • Melville, P., Mooney, R., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the 18th national conference on artificial intelligence (AAAI-2002) (pp. 187-192). Edmonton, Canada: July.
    • Melville, P., Mooney, R., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. In: Proceedings of the 18th national conference on artificial intelligence (AAAI-2002) (pp. 187-192). Edmonton, Canada: July.
  • 10
    • 84855195639 scopus 로고    scopus 로고
    • Collaborative filtering methods for binary market basket data analysis
    • Mild A., and Reutterer T. Collaborative filtering methods for binary market basket data analysis. Lecture Notes in Computer Science 2252 (2001) 302-313
    • (2001) Lecture Notes in Computer Science , vol.2252 , pp. 302-313
    • Mild, A.1    Reutterer, T.2
  • 11
    • 85052617391 scopus 로고    scopus 로고
    • Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international world wide web conference (WWW10) (pp. 285-295). Hong Kong: May 1-5.
    • Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international world wide web conference (WWW10) (pp. 285-295). Hong Kong: May 1-5.
  • 12
    • 58349114176 scopus 로고    scopus 로고
    • Ungar, L. H., & Foster, D. P. (1998). Clustering methods for collaborative filtering. Workshop on recommendation systems at the 15th national conference on artificial intelligence. Madison, Wisconsin: July.
    • Ungar, L. H., & Foster, D. P. (1998). Clustering methods for collaborative filtering. Workshop on recommendation systems at the 15th national conference on artificial intelligence. Madison, Wisconsin: July.
  • 13
    • 58349102114 scopus 로고    scopus 로고
    • Vucetic, S., & Obradovic, Z. (2000). A regression-based approach for scaling-up personalized recommender systems in E-commerce. In: Proceedings of the WEBKDD workshop on web mining for E-commerce - challenges and opportunities. Boston, Massachusetts: August.
    • Vucetic, S., & Obradovic, Z. (2000). A regression-based approach for scaling-up personalized recommender systems in E-commerce. In: Proceedings of the WEBKDD workshop on web mining for E-commerce - challenges and opportunities. Boston, Massachusetts: August.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.