메뉴 건너뛰기




Volumn 36, Issue 3 PART 2, 2009, Pages 6935-6944

A phenotypic genetic algorithm for inductive logic programming

Author keywords

Inductive logic programming; Multiple level structure; Numerical data; Phenotypic genetic algorithm; Semantic roles

Indexed keywords

COMMERCE; COMPUTER CIRCUITS; DATA HANDLING; ELECTRONIC TRADING; GENETIC ALGORITHMS; LEARNING SYSTEMS; SEMANTICS;

EID: 58349083054     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.08.040     Document Type: Article
Times cited : (10)

References (26)
  • 2
    • 58349103627 scopus 로고    scopus 로고
    • Baldwin, J. F., & Martin, T. P. (1998). Learning uncertain logic programs from examples. In Proceedings of the 2nd international workshop on logic programming and soft computing, Manchester, UK.
    • Baldwin, J. F., & Martin, T. P. (1998). Learning uncertain logic programs from examples. In Proceedings of the 2nd international workshop on logic programming and soft computing, Manchester, UK.
  • 8
    • 58349102617 scopus 로고    scopus 로고
    • Kovalerchuk, B., & Vityaev, E. (1998). Inductive logic programming for discovering financial regularities. In Proceedings of the workshop on data mining in finance, KDD 98, New York (pp. 1-16).
    • Kovalerchuk, B., & Vityaev, E. (1998). Inductive logic programming for discovering financial regularities. In Proceedings of the workshop on data mining in finance, KDD 98, New York (pp. 1-16).
  • 9
    • 0033363432 scopus 로고    scopus 로고
    • Kovalerchuk, B., & Vityaev, E. (1999). Comparison of relational methods and attribute-based methods for data mining in intelligent systems. In Proceedings of the 1999 IEEE international symposium on intelligent control/ intelligent systems and semiotics, Cambridge, MA (pp. 162-166).
    • Kovalerchuk, B., & Vityaev, E. (1999). Comparison of relational methods and attribute-based methods for data mining in intelligent systems. In Proceedings of the 1999 IEEE international symposium on intelligent control/ intelligent systems and semiotics, Cambridge, MA (pp. 162-166).
  • 10
    • 58349083999 scopus 로고    scopus 로고
    • Kovalerchuk, B., Vityaev, E., & Yusupov, H. (2002). Symbolic methodology in numeric data mining: Relational techniques for financial applications. ArXiv Computer Science e-prints, pp. 1-20.
    • Kovalerchuk, B., Vityaev, E., & Yusupov, H. (2002). Symbolic methodology in numeric data mining: Relational techniques for financial applications. ArXiv Computer Science e-prints, pp. 1-20.
  • 14
    • 0003156949 scopus 로고
    • Inductive logic programming: Derivations, successes and shortcomings
    • Muggleton S. Inductive logic programming: Derivations, successes and shortcomings. SIGART Bulletin 5 1 (1994) 5-11
    • (1994) SIGART Bulletin , vol.5 , Issue.1 , pp. 5-11
    • Muggleton, S.1
  • 15
    • 58349101656 scopus 로고    scopus 로고
    • Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the 1st conference on algorithmic learning theory Tokyo, Japan (pp. 368-381).
    • Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the 1st conference on algorithmic learning theory Tokyo, Japan (pp. 368-381).
  • 16
    • 0003249507 scopus 로고
    • An information-based approach to integrating empirical and explanation-based learning
    • Academic Press, London
    • Pazzani M., Brunk C., and Silverstein G. An information-based approach to integrating empirical and explanation-based learning. Inductive logic programming (1992), Academic Press, London 373-394
    • (1992) Inductive logic programming , pp. 373-394
    • Pazzani, M.1    Brunk, C.2    Silverstein, G.3
  • 18
    • 11144313109 scopus 로고    scopus 로고
    • Prade, H., & Serrurier, M. (2004). Getting adaptability or expressivity in inductive logic programming by using fuzzy predicates. In Proceedings of the IEEE international conference on fuzzy systems, Budapest, Hungary (Vol. 1, pp. 73-77).
    • Prade, H., & Serrurier, M. (2004). Getting adaptability or expressivity in inductive logic programming by using fuzzy predicates. In Proceedings of the IEEE international conference on fuzzy systems, Budapest, Hungary (Vol. 1, pp. 73-77).
  • 19
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan J.R. Learning logical definitions from relations. Machine Learning 5 3 (1990) 239-266
    • (1990) Machine Learning , vol.5 , Issue.3 , pp. 239-266
    • Quinlan, J.R.1
  • 20
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77 22 (1989) 257-286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.22 , pp. 257-286
    • Rabiner, L.R.1
  • 21
    • 0022594196 scopus 로고
    • An introduction to hidden markov models
    • Rabiner L.R., and Juang B.H. An introduction to hidden markov models. IEEE ASSP Magazine 3 1 (1986) 4-16
    • (1986) IEEE ASSP Magazine , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.R.1    Juang, B.H.2
  • 23
    • 33751049900 scopus 로고    scopus 로고
    • An efficient genetic algorithm for determining the optimal price discrimination
    • Safaei N., Sadjadi S.J., and Babakhani M. An efficient genetic algorithm for determining the optimal price discrimination. Applied Mathematics and Computation 181 (2006) 1702-1963
    • (2006) Applied Mathematics and Computation , vol.181 , pp. 1702-1963
    • Safaei, N.1    Sadjadi, S.J.2    Babakhani, M.3
  • 26
    • 3042663315 scopus 로고    scopus 로고
    • Neural networks as a decision maker for stock trading: A technical analysis approach
    • Thawornwong S., Enke D., and Dagli C. Neural networks as a decision maker for stock trading: A technical analysis approach. Journal of Smart Engineering Systems Design 5 (2003) 1-13
    • (2003) Journal of Smart Engineering Systems Design , vol.5 , pp. 1-13
    • Thawornwong, S.1    Enke, D.2    Dagli, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.