-
1
-
-
53549101406
-
-
For an application of enantioselective catalysis to site- and enantioselective synthesis, see
-
For an application of enantioselective catalysis to site- and enantioselective synthesis, see: C. A. Lewis, S. J. Miller, Angew. Chem. 2006, 118, 5744-5747;
-
(2006)
Angew. Chem
, vol.118
, pp. 5744-5747
-
-
Lewis, C.A.1
Miller, S.J.2
-
2
-
-
33748581386
-
-
Angew. Chem. Int. Ed. 2006, 45, 5616-5619.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 5616-5619
-
-
-
3
-
-
53849095853
-
-
For copper-catalyzed enantioselective benzoylation reactions of 1,2,3-triols, see: a
-
For copper-catalyzed enantioselective benzoylation reactions of 1,2,3-triols, see: a) B. Jung, M. S. Hong, S. H. Kang, Angew. Chem. 2007, 119, 2670-2672;
-
(2007)
Angew. Chem
, vol.119
, pp. 2670-2672
-
-
Jung, B.1
Hong, M.S.2
Kang, S.H.3
-
4
-
-
34250886944
-
-
Angew. Chem. Int. Ed. 2007, 46, 2616-2618;
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 2616-2618
-
-
-
6
-
-
33748413162
-
-
For previous reports regarding catalytic enantioselective silylation reactions, see: a
-
For previous reports regarding catalytic enantioselective silylation reactions, see: a) Y. Zhao, J. Rodrigo, A. H. Hoveyda, M. L. Snapper, Nature 2006, 443, 67-70;
-
(2006)
Nature
, vol.443
, pp. 67-70
-
-
Zhao, Y.1
Rodrigo, J.2
Hoveyda, A.H.3
Snapper, M.L.4
-
7
-
-
38049013578
-
-
b) Y. Zhao, A. W. Mitra, A. H. Hoveyda, M. L. Snapper, Angew. Chem. 2007, 119, 8623-8626;
-
(2007)
Angew. Chem
, vol.119
, pp. 8623-8626
-
-
Zhao, Y.1
Mitra, A.W.2
Hoveyda, A.H.3
Snapper, M.L.4
-
8
-
-
36148978554
-
-
Angew. Chem. Int. Ed. 2007, 46, 8471-8474.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 8471-8474
-
-
-
9
-
-
57649166595
-
-
For an overview of enantioselective silylation processes, see
-
For an overview of enantioselective silylation processes, see: S. Rendler, M. Oestreich, Angew. Chem. 2008, 120, 254-257;
-
(2008)
Angew. Chem
, vol.120
, pp. 254-257
-
-
Rendler, S.1
Oestreich, M.2
-
10
-
-
38049036289
-
-
Angew. Chem. Int. Ed. 2008, 47, 248-250.
-
(2008)
Angew. Chem. Int. Ed
, vol.47
, pp. 248-250
-
-
-
11
-
-
4444276636
-
-
Catalytic enantioselective dihydroxylations of cyclic allylic alcohols afford the derived anti diastereomers. See: H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.
-
Catalytic enantioselective dihydroxylations of cyclic allylic alcohols afford the derived anti diastereomers. See: H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.
-
-
-
-
12
-
-
0037111592
-
-
Hydroxy-directed dihydroxylation reactions of cyclic allylic alcohols afford meso triols diastereoselectively. See: T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. G. Winter, M. Helliwell, N. J. Newcombe, G. Stemp, J. Org. Chem. 2002, 67, 7946-7956.
-
Hydroxy-directed dihydroxylation reactions of cyclic allylic alcohols afford meso triols diastereoselectively. See: T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. G. Winter, M. Helliwell, N. J. Newcombe, G. Stemp, J. Org. Chem. 2002, 67, 7946-7956.
-
-
-
-
13
-
-
0030768479
-
-
J. Tian, Q.-S. Zhao, H.-J. Zhang, Z.-W. Lin, H.-D. Sun, J. Nat. Prod. 1997, 60, 766-769.
-
(1997)
J. Nat. Prod
, vol.60
, pp. 766-769
-
-
Tian, J.1
Zhao, Q.-S.2
Zhang, H.-J.3
Lin, Z.-W.4
Sun, H.-D.5
-
14
-
-
36849014341
-
-
For a total synthesis of rac-cleroindicin D, culminating in a structural revision of the natural product, see: S. Barradas, M. C. Carreño, M. González-López, A. Latorre, A. Urbano, Org. Lett. 2007, 9, 5019-5022.
-
For a total synthesis of rac-cleroindicin D, culminating in a structural revision of the natural product, see: S. Barradas, M. C. Carreño, M. González-López, A. Latorre, A. Urbano, Org. Lett. 2007, 9, 5019-5022.
-
-
-
-
15
-
-
58249116514
-
-
For details regarding preparation of triol substrates, see the Supporting Information
-
For details regarding preparation of triol substrates, see the Supporting Information.
-
-
-
-
16
-
-
58249117603
-
-
Varying amounts of bis-silylation products are formed in reactions involving substrates that bear a smaller substituent at the central carbinol unit. For example, 8, 32, and 36% bissilyl product is isolated from the transformations shown in entries 3, 7, and 8 of Table 1, respectively. Such bis-silylations increase the enantiomeric purity of the chiral monosilyl products
-
Varying amounts of bis-silylation products are formed in reactions involving substrates that bear a smaller substituent at the central carbinol unit. For example, 8%, 32%, and 36% bissilyl product is isolated from the transformations shown in entries 3, 7, and 8 of Table 1, respectively. Such bis-silylations increase the enantiomeric purity of the chiral monosilyl products.
-
-
-
-
17
-
-
0034805351
-
-
For enantioselective syntheses of a related cyclohexane-based triols by enzymatic resolution of meso-2-(2-propynyl)cyclohexane-1,2,3-triol, see: T. Matsumoto, T. Konegawa, H. Yamaguchi, T. Nakamura, T. Sugai, K. Suzuki, Synlett 2001, 1650-1652.
-
For enantioselective syntheses of a related cyclohexane-based triols by enzymatic resolution of meso-2-(2-propynyl)cyclohexane-1,2,3-triol, see: T. Matsumoto, T. Konegawa, H. Yamaguchi, T. Nakamura, T. Sugai, K. Suzuki, Synlett 2001, 1650-1652.
-
-
-
-
18
-
-
58249117693
-
-
It should be noted that 15% of bis-silylated product is also obtained in the enantioselective silylation of 1,2,3-triol 16; this byproduct is easily removed by using silica gel chromatography. Such a process serves as a correcting mechanism in the catalytic process to remove the minor product enantiomer
-
It should be noted that 15% of bis-silylated product is also obtained in the enantioselective silylation of 1,2,3-triol 16; this byproduct is easily removed by using silica gel chromatography. Such a process serves as a "correcting" mechanism in the catalytic process to remove the minor product enantiomer.
-
-
-
-
19
-
-
0007673575
-
-
For enantioselective syntheses of cyclohexane-1,2,3-triols through enzymatic kinetic resolution, see
-
For enantioselective syntheses of cyclohexane-1,2,3-triols through enzymatic kinetic resolution, see: L. Dumortier, J. Van der Eycken, M. Vandewalle, Tetrahedron Lett. 1989, 30, 3201-3204.
-
(1989)
Tetrahedron Lett
, vol.30
, pp. 3201-3204
-
-
Dumortier, L.1
Van der Eycken, J.2
Vandewalle, M.3
-
20
-
-
70350650110
-
-
For example, see: a
-
For example, see: a) X. Deruytterre, L. Dumortier, J. Van der Eycken, M. Vandewalle, Synlett 1992, 51-52;
-
(1992)
Synlett
, pp. 51-52
-
-
Deruytterre, X.1
Dumortier, L.2
Van der Eycken, J.3
Vandewalle, M.4
-
21
-
-
34548818779
-
-
b) S. K. Vadivel, S. Vardarajan, R. I. Duclos, Jr., J. T. Wood, J. Guo, A. Makriyannis, Bioorg. Med. Chem. Lett. 2007, 17, 5959-5963.
-
(2007)
Bioorg. Med. Chem. Lett
, vol.17
, pp. 5959-5963
-
-
Vadivel, S.K.1
Vardarajan, S.2
Duclos Jr., R.I.3
Wood, J.T.4
Guo, J.5
Makriyannis, A.6
-
22
-
-
58249109408
-
-
In the presence of 30 mol% 1 (0 8C) and after 72 h of reaction time, silyl ether 19 is isolated in 32% yield and 98.5:1.5 e.r, 97% ee
-
In the presence of 30 mol% 1 (0 8C) and after 72 h of reaction time, silyl ether 19 is isolated in 32% yield and 98.5:1.5 e.r. (97% ee).
-
-
-
-
24
-
-
1842613077
-
-
a) A. McKillop, R. J. K. Taylor, R. J. Watson, N. Lewis, Synlett 1992, 1005-1006.
-
(1992)
Synlett
, pp. 1005-1006
-
-
McKillop, A.1
Taylor, R.J.K.2
Watson, R.J.3
Lewis, N.4
-
25
-
-
0000458209
-
-
For a review of hydroxyl-directed epoxidations, see:b
-
For a review of hydroxyl-directed epoxidations, see:b) A. H. Hoveyda, D. A. Evans, G. C. Fu, Chem. Rev. 1993, 93, 1307-1370.
-
(1993)
Chem. Rev
, vol.93
, pp. 1307-1370
-
-
Hoveyda, A.H.1
Evans, D.A.2
Fu, G.C.3
-
26
-
-
23044481109
-
-
X. Lei, N. Zaarur, M. Y. Sherman, J. A. Porco, Jr., J. Org. Chem. 2005, 70, 6474-6483.
-
(2005)
J. Org. Chem
, vol.70
, pp. 6474-6483
-
-
Lei, X.1
Zaarur, N.2
Sherman, M.Y.3
Porco Jr., J.A.4
|