메뉴 건너뛰기




Volumn 15, Issue 5, 2008, Pages 833-850

Saddle-nodes and period-doublings of Smale horseshoes: A case study near resonant homoclinic bellows

Author keywords

Bifurcation; Homoclinic loop; Horseshoe

Indexed keywords


EID: 58249103073     PISSN: 13701444     EISSN: None     Source Type: Journal    
DOI: 10.36045/bbms/1228486411     Document Type: Article
Times cited : (2)

References (21)
  • 4
    • 58249124593 scopus 로고    scopus 로고
    • J. Guckenheimer and P. J. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983 original.
    • J. Guckenheimer and P. J. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983 original.
  • 5
    • 0030147357 scopus 로고    scopus 로고
    • Global aspects of homoclinic bifurcations of vector fields
    • 121(578):viii+128
    • A. J. Homburg. Global aspects of homoclinic bifurcations of vector fields. Mem. Amer. Math. Soc., 121(578):viii+128, 1996.
    • (1996) Mem. Amer. Math. Soc
    • Homburg, A.J.1
  • 6
    • 33645786256 scopus 로고    scopus 로고
    • Multiple homoclinic orbits in conservative and reversible systems
    • A. J. Homburg and J. Knobloch. Multiple homoclinic orbits in conservative and reversible systems. Trans. Amer. Math. Soc., 358(4):1715-1740, 2006.
    • (2006) Trans. Amer. Math. Soc , vol.358 , Issue.4 , pp. 1715-1740
    • Homburg, A.J.1    Knobloch, J.2
  • 7
    • 0001559874 scopus 로고
    • The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit
    • A. J. Homburg, H. Kokubu, and M. Krupa. The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit. Ergodic Theory Dynam. Systems, 14(4):667-693, 1994.
    • (1994) Ergodic Theory Dynam. Systems , vol.14 , Issue.4 , pp. 667-693
    • Homburg, A.J.1    Kokubu, H.2    Krupa, M.3
  • 9
    • 0001002402 scopus 로고
    • Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields
    • M. Kisaka, H. Kokubu, and H. Oka. Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields. J. Dynam. Differential Equations, 5(2):305-357, 1993.
    • (1993) J. Dynam. Differential Equations , vol.5 , Issue.2 , pp. 305-357
    • Kisaka, M.1    Kokubu, H.2    Oka, H.3
  • 12
    • 84972438215 scopus 로고
    • Using Melnikovs method to solve Shil'nikovs problems
    • X.-B. Lin. Using Melnikovs method to solve Shil'nikovs problems. Proc. Roy. Soc. Edinburgh, 116A:295 - 325, 1990.
    • (1990) Proc. Roy. Soc. Edinburgh , vol.116 A , pp. 295-325
    • Lin, X.-B.1
  • 13
    • 0003267742 scopus 로고
    • Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations
    • of, Cambridge University Press, Cambridge, Fractal dimensions and infinitely many attractors
    • J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors.
    • (1993) Cambridge Studies in Advanced Mathematics , vol.35
    • Palis, J.1    Takens, F.2
  • 14
    • 0000086970 scopus 로고
    • Homoclinic bifurcation to a transitive attractor of Lorenz type
    • R. C. Robinson. Homoclinic bifurcation to a transitive attractor of Lorenz type. Nonlinearity, 2:495-518, 1989.
    • (1989) Nonlinearity , vol.2 , pp. 495-518
    • Robinson, R.C.1
  • 15
    • 0007251283 scopus 로고
    • Homoclinic bifurcation to a transitive attractor of Lorenz type. II
    • R. C. Robinson. Homoclinic bifurcation to a transitive attractor of Lorenz type. II. SIAM J. Math. Anal., 23:1255 - 1268, 1992.
    • (1992) SIAM J. Math. Anal , vol.23 , pp. 1255-1268
    • Robinson, R.C.1
  • 17
    • 0007428880 scopus 로고    scopus 로고
    • Center manifolds for homoclinic solutions
    • B. Sandstede. Center manifolds for homoclinic solutions. J. Dynam. Differential Equations, 12(3):449-510, 2000.
    • (2000) J. Dynam. Differential Equations , vol.12 , Issue.3 , pp. 449-510
    • Sandstede, B.1
  • 18
    • 0003351887 scopus 로고
    • Generic bifurcations of dynamical systems
    • Salvador, Academic Press, New York
    • J. Sotomayor. Generic bifurcations of dynamical systems. In Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pages 561-582. Academic Press, New York, 1973.
    • (1971) Dynamical systems (Proc. Sympos., Univ. Bahia , pp. 561-582
    • Sotomayor, J.1
  • 19
    • 0011351772 scopus 로고
    • Bifurcations of a homoclinic "figure eight" of a multidimensional saddle
    • D. V. Turaev. Bifurcations of a homoclinic "figure eight" of a multidimensional saddle. Russian Math. Surveys, 43:264 - 265, 1988.
    • (1988) Russian Math. Surveys , vol.43 , pp. 264-265
    • Turaev, D.V.1
  • 20
    • 0030136340 scopus 로고    scopus 로고
    • On dimension of non-local bifurcational problems
    • D. V. Turaev. On dimension of non-local bifurcational problems. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6(5):919-948, 1996.
    • (1996) Internat. J. Bifur. Chaos Appl. Sci. Engrg , vol.6 , Issue.5 , pp. 919-948
    • Turaev, D.V.1
  • 21
    • 0000034625 scopus 로고
    • Homoclinic period blow-up in reversible and conservative systems
    • A. Vanderbauwhede and B. Fiedler. Homoclinic period blow-up in reversible and conservative systems. Z. angew. Math. Phys., 43:292 - 318, 1992.
    • (1992) Z. angew. Math. Phys , vol.43 , pp. 292-318
    • Vanderbauwhede, A.1    Fiedler, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.