-
1
-
-
0035540065
-
Second order Chebyshev methods based on orthogonal polynomials
-
Abdulle A., and Medovikov A.A. Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90 (2001) 1-18
-
(2001)
Numer. Math.
, vol.90
, pp. 1-18
-
-
Abdulle, A.1
Medovikov, A.A.2
-
2
-
-
33646134622
-
A parallel exponential integrator for large-scale discretizations of advection-diffusion models
-
Recent Advances in Parallel Virtual Machine and Message Passing Interface. Di Martino B., et al. (Ed), Springer, Berlin
-
Bergamaschi L., Caliari M., Martínez A., and Vianello M. A parallel exponential integrator for large-scale discretizations of advection-diffusion models. In: Di Martino B., et al. (Ed). Recent Advances in Parallel Virtual Machine and Message Passing Interface. Lecture Notes in Computer Science vol. 3666 (2005), Springer, Berlin 483-492
-
(2005)
Lecture Notes in Computer Science
, vol.3666
, pp. 483-492
-
-
Bergamaschi, L.1
Caliari, M.2
Martínez, A.3
Vianello, M.4
-
3
-
-
33746647775
-
Comparing Leja and Krylov approximations of large scale matrix exponentials
-
Computational Science. Alexandrov V.N., et al. (Ed). ICCS 2006, Springer, Berlin
-
Bergamaschi L., Caliari M., Martínez A., and Vianello M. Comparing Leja and Krylov approximations of large scale matrix exponentials. In: Alexandrov V.N., et al. (Ed). Computational Science. ICCS 2006. Lecture Notes in Computer Science vol. 3994 (2006), Springer, Berlin 685-692
-
(2006)
Lecture Notes in Computer Science
, vol.3994
, pp. 685-692
-
-
Bergamaschi, L.1
Caliari, M.2
Martínez, A.3
Vianello, M.4
-
5
-
-
4444264388
-
Interpolating discrete advection-diffusion propagators at Leja sequences
-
Caliari M., Vianello M., and Bergamaschi L. Interpolating discrete advection-diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172 (2004) 79-99
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 79-99
-
-
Caliari, M.1
Vianello, M.2
Bergamaschi, L.3
-
6
-
-
29144478020
-
A class of explicit multistep exponential integrators for semilinear problems
-
Calvo M.P., and Palencia C. A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102 (2006) 367-381
-
(2006)
Numer. Math.
, vol.102
, pp. 367-381
-
-
Calvo, M.P.1
Palencia, C.2
-
7
-
-
0000269389
-
Efficient solution of parabolic equations by Krylov subspace methods
-
Gallopoulos E., and Saad Y. Efficient solution of parabolic equations by Krylov subspace methods. SIAM J. Sci. Statist. Comput. 13 (1992) 1236-1264
-
(1992)
SIAM J. Sci. Statist. Comput.
, vol.13
, pp. 1236-1264
-
-
Gallopoulos, E.1
Saad, Y.2
-
9
-
-
0003304963
-
Geometric Theory of Semilinear Parabolic Equations
-
Springer, Berlin
-
Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics vol. 840 (1981), Springer, Berlin
-
(1981)
Lecture Notes in Mathematics
, vol.840
-
-
Henry, D.1
-
10
-
-
0347799731
-
On Krylov subspace approximations to the matrix exponential operator
-
Hochbruck M., and Lubich C. On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34 (1997) 1911-1925
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 1911-1925
-
-
Hochbruck, M.1
Lubich, C.2
-
11
-
-
33646264630
-
Explicit exponential Runge-Kutta methods for semilinear parabolic problems
-
Hochbruck M., and Ostermann A. Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43 (2005) 1069-1090
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, pp. 1069-1090
-
-
Hochbruck, M.1
Ostermann, A.2
-
12
-
-
58249084989
-
Exponential integrators of Rosenbrock-type
-
Hochbruck M., and Ostermann A. Exponential integrators of Rosenbrock-type. Oberwolfach Reports 3 (2006) 1107-1110
-
(2006)
Oberwolfach Reports
, vol.3
, pp. 1107-1110
-
-
Hochbruck, M.1
Ostermann, A.2
-
13
-
-
58249089101
-
-
M. Hochbruck, A. Ostermann, J. Schweitzer, Exponential Rosenbrock-type methods (2008), submitted for publication
-
M. Hochbruck, A. Ostermann, J. Schweitzer, Exponential Rosenbrock-type methods (2008), submitted for publication
-
-
-
-
14
-
-
58249089100
-
-
A. Martínez, L. Bergamaschi, M. Caliari, M. Vianello, Efficient massively parallel implementation of the ReLPM exponential integrator for advection-diffusion models, 2006, Technical report
-
A. Martínez, L. Bergamaschi, M. Caliari, M. Vianello, Efficient massively parallel implementation of the ReLPM exponential integrator for advection-diffusion models, 2006, Technical report
-
-
-
-
15
-
-
8144228833
-
RD-rational approximation of the matrix exponential operator
-
Novati P., and Moret I. RD-rational approximation of the matrix exponential operator. BIT 44 (2004) 595-615
-
(2004)
BIT
, vol.44
, pp. 595-615
-
-
Novati, P.1
Moret, I.2
-
16
-
-
33745319450
-
A class of explicit exponential general linear methods
-
Ostermann A., Thalhammer M., and Wright W. A class of explicit exponential general linear methods. BIT 46 (2006) 409-431
-
(2006)
BIT
, vol.46
, pp. 409-431
-
-
Ostermann, A.1
Thalhammer, M.2
Wright, W.3
-
17
-
-
0012089844
-
Newton interpolation at Leja points
-
Reichel L. Newton interpolation at Leja points. BIT 30 (1990) 332-346
-
(1990)
BIT
, vol.30
, pp. 332-346
-
-
Reichel, L.1
-
18
-
-
58149333483
-
Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals
-
Schmelzer T., and Trefethen L.N. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals. ETNA 29 (2007) 1-18
-
(2007)
ETNA
, vol.29
, pp. 1-18
-
-
Schmelzer, T.1
Trefethen, L.N.2
-
20
-
-
0004586997
-
High degree polynomial interpolation in Newton form
-
Tal-Ezer H. High degree polynomial interpolation in Newton form. SIAM J. Sci. Statist. Comput. 12 (1991) 648-667
-
(1991)
SIAM J. Sci. Statist. Comput.
, vol.12
, pp. 648-667
-
-
Tal-Ezer, H.1
-
21
-
-
33646928736
-
Preconditioning Lanczos approximations to the matrix exponential
-
van den Eshof J., and Hochbruck M. Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comp. 27 (2006) 1438-1457
-
(2006)
SIAM J. Sci. Comp.
, vol.27
, pp. 1438-1457
-
-
van den Eshof, J.1
Hochbruck, M.2
|