-
2
-
-
34249014337
-
-
a) J. H. Shim, J. Kim, G. Sig Cha, H. Nam, J. Ryan, H. S. White, R. B. Brown, Anal. Chem. 2007, 79, 3568-3574;
-
(2007)
Anal. Chem
, vol.79
, pp. 3568-3574
-
-
Shim, J.H.1
Kim, J.2
Sig Cha, G.3
Nam, H.4
Ryan, J.5
White, H.S.6
Brown, R.B.7
-
3
-
-
7644221740
-
-
b) B. Zhang, Y. Zhang, H. S. White, Anal. Chem. 2004, 76, 6229-6238;
-
(2004)
Anal. Chem
, vol.76
, pp. 6229-6238
-
-
Zhang, B.1
Zhang, Y.2
White, H.S.3
-
6
-
-
0001618940
-
-
M. Nishizawa, V. P. Menon, C. R. Martin, Science 1995, 268, 700-702.
-
(1995)
Science
, vol.268
, pp. 700-702
-
-
Nishizawa, M.1
Menon, V.P.2
Martin, C.R.3
-
8
-
-
58149505514
-
-
In this context, let us emphasize that although the ion-transport selectivity is imposed electrochemically in such devices, no current is flowing through the system or between the two solutions that are separated by the metallized membrane, with the exception of charging capacitive currents that pass during the very first instants in which the potential is applied to the nanopore metallic frame. Then, in contrast to biological ion channels, the flow of one type of ions from the compartment where its electrochemical potential is higher to the other compartment is exactly compensated by the opposite flow of an ion of the same charge
-
In this context, let us emphasize that although the ion-transport selectivity is imposed electrochemically in such devices, no current is flowing through the system or between the two solutions that are separated by the metallized membrane, with the exception of charging capacitive currents that pass during the very first instants in which the potential is applied to the nanopore metallic frame. Then, in contrast to biological ion channels, the flow of one type of ions from the compartment where its electrochemical potential is higher to the other compartment is exactly compensated by the opposite flow of an ion of the same charge.
-
-
-
-
10
-
-
36449002040
-
-
b) L. Yeomans, S. E. Feller, E. Sanchez, M. Lozada-Cassou, J. Chem. Phys. 1993, 98, 1436-1450;
-
(1993)
J. Chem. Phys
, vol.98
, pp. 1436-1450
-
-
Yeomans, L.1
Feller, S.E.2
Sanchez, E.3
Lozada-Cassou, M.4
-
11
-
-
0034510099
-
-
c) B. Hribar, V. Vlachy, L. B. Bhuiyan, C. W. Outwaite, J. Phys. Chem. B 2000, 104, 11522-11527.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 11522-11527
-
-
Hribar, B.1
Vlachy, V.2
Bhuiyan, L.B.3
Outwaite, C.W.4
-
12
-
-
58149505533
-
-
This may look different from the experimental description of the cell given in ref, 3, Yet, as is made clear in the Modeling and Simulation section, this corresponds exactly to what occurs in the immediate vicinity of the membrane in ref, 3
-
This may look different from the experimental description of the cell given in ref. [3]. Yet, as is made clear in the "Modeling and Simulation" section, this corresponds exactly to what occurs in the immediate vicinity of the membrane in ref. [3].
-
-
-
-
13
-
-
2942597943
-
-
a) F. Grün, M. Jardat, P. Turq, C. Amatore, J. Chem. Phys. 2004, 120, 9648-9655;
-
(2004)
J. Chem. Phys
, vol.120
, pp. 9648-9655
-
-
Grün, F.1
Jardat, M.2
Turq, P.3
Amatore, C.4
-
14
-
-
0037078435
-
-
b) V. Marry, F. Grün, C. Simon, M. Jardat, P. Turq, C. Amatore, J. Phys. Condens. Matter 2002, 14, 9207-9221.
-
(2002)
J. Phys. Condens. Matter
, vol.14
, pp. 9207-9221
-
-
Marry, V.1
Grün, F.2
Simon, C.3
Jardat, M.4
Turq, P.5
Amatore, C.6
-
15
-
-
34447531863
-
-
C. Amatore, F. Grün, E. Maisonhaute, Angew. Chem. 2003, 115, 5094-5097;
-
(2003)
Angew. Chem
, vol.115
, pp. 5094-5097
-
-
Amatore, C.1
Grün, F.2
Maisonhaute, E.3
-
16
-
-
0242292017
-
-
Angew. Chem. Int. Ed. 2003, 42, 4944-4947.
-
(2003)
Angew. Chem. Int. Ed
, vol.42
, pp. 4944-4947
-
-
-
17
-
-
0020746096
-
-
a) C. Amatore, J.-M. Savéant, D. Tessier, J. Electroanal. Chem. Interfacial Electrochem. 1983, 147, 39-51;
-
(1983)
J. Electroanal. Chem. Interfacial Electrochem
, vol.147
, pp. 39-51
-
-
Amatore, C.1
Savéant, J.-M.2
Tessier, D.3
-
18
-
-
58149521863
-
-
Ed, I. Rubinstein, Marcel Dekker, New York, chap. 4
-
b) C. Amatore in Physical Electrochemistry: Principles, Methods and Applications (Ed.: I. Rubinstein), Marcel Dekker, New York, 1995, chap. 4.
-
(1995)
Physical Electrochemistry: Principles, Methods and Applications
-
-
Amatore, C.1
-
20
-
-
42949095265
-
-
b) C. Amatore, A. Oleinick, O. V. Klymenko, C. Delacôte, A. Walcarius, I. Svir, Anal. Chem. 2008, 80, 3229-3243.
-
(2008)
Anal. Chem
, vol.80
, pp. 3229-3243
-
-
Amatore, C.1
Oleinick, A.2
Klymenko, O.V.3
Delacôte, C.4
Walcarius, A.5
Svir, I.6
-
21
-
-
33749234145
-
-
C. Amatore, A. I. Oleinick, I. Svir, J. Electroanal. Chem. 2006, 597, 77-85.
-
(2006)
J. Electroanal. Chem
, vol.597
, pp. 77-85
-
-
Amatore, C.1
Oleinick, A.I.2
Svir, I.3
-
22
-
-
0000446656
-
-
a) C. Amatore, B. Fosset, J. E. Bartelt, M. R. Deakin, R. M. Wightman, J. Electroanal. Chem. Interfacial Electrochem. 1988, 256, 255-268;
-
(1988)
J. Electroanal. Chem. Interfacial Electrochem
, vol.256
, pp. 255-268
-
-
Amatore, C.1
Fosset, B.2
Bartelt, J.E.3
Deakin, M.R.4
Wightman, R.M.5
-
23
-
-
4143099050
-
-
b) C. Amatore, K. Knobloch, L. Thouin, Electrochem. Commun. 2004, 6, 887-891;
-
(2004)
Electrochem. Commun
, vol.6
, pp. 887-891
-
-
Amatore, C.1
Knobloch, K.2
Thouin, L.3
-
24
-
-
34548052036
-
-
c) O. V. Klymenko, C. Amatore, I. Svir, Anal. Chem. 2007, 79, 6341-6347.
-
(2007)
Anal. Chem
, vol.79
, pp. 6341-6347
-
-
Klymenko, O.V.1
Amatore, C.2
Svir, I.3
-
25
-
-
58149483308
-
-
However, due to the cylindrical geometry considered here, the OHP would be better designated as the outer Helmholtz cylinder, as it is concentric with the nanopore wall. However, to comply with general usage we keep the OHP notation
-
However, due to the cylindrical geometry considered here, the OHP would be better designated as the outer Helmholtz cylinder, as it is concentric with the nanopore wall. However, to comply with general usage we keep the OHP notation.
-
-
-
-
26
-
-
4444312864
-
-
Compare, for example, the drastic changes introduced in ionic liquids vis-à-vis classical electrochemical solutions. See, for example: a O. V. Klymenko, R. G. Evans, C. Hardacre, I. B. Svir, R. G. Compton, J. Electroanal. Chem. 2004, 571, 211-221;
-
Compare, for example, the drastic changes introduced in ionic liquids vis-à-vis classical electrochemical solutions. See, for example: a) O. V. Klymenko, R. G. Evans, C. Hardacre, I. B. Svir, R. G. Compton, J. Electroanal. Chem. 2004, 571, 211-221;
-
-
-
-
27
-
-
3042693670
-
-
b) R. G. Evans, O. V. Klymenko, S. A. Saddoughi, C. Hardacre, R. G. Compton, J. Phys. Chem. B 2004, 108, 7878-7886;
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 7878-7886
-
-
Evans, R.G.1
Klymenko, O.V.2
Saddoughi, S.A.3
Hardacre, C.4
Compton, R.G.5
-
28
-
-
16444361965
-
-
c) R. G. Evans, O. V. Klymenko, P. D. Price, S. G. Davies, C. Hardacre, R. G. Compton, ChemPhysChem 2005, 6, 526-533.
-
(2005)
ChemPhysChem
, vol.6
, pp. 526-533
-
-
Evans, R.G.1
Klymenko, O.V.2
Price, P.D.3
Davies, S.G.4
Hardacre, C.5
Compton, R.G.6
-
29
-
-
58149519943
-
-
This is a classical and problematic issue in analytical GCS double-layer models.[4] However, because of internal compensations the ensuing predictions of electrode double-layer capacitances (i.e. of the ion distributions in the ensuing electrostatic potentials) are overall consistent with experimental results[4] or with results of molecular Brownian dynamics.[8] There is no reason for this internal compensation not to be valid here also, since Equations (7) and (18) are compatible with those found in classical GCS models.[4
-
[4]
-
-
-
-
30
-
-
58149524483
-
-
pzc= -4 mV versus the solution: J. Clavillier, C. N. V. Huong, J. Electroanal. Chem. Interfacial Electrochem. 1977, 80, 101.
-
pzc= -4 mV versus the solution: J. Clavillier, C. N. V. Huong, J. Electroanal. Chem. Interfacial Electrochem. 1977, 80, 101.
-
-
-
-
31
-
-
58149495924
-
-
+ <0.9.
-
+ <0.9.
-
-
-
|