-
1
-
-
34547170804
-
Lectures on Cantor and Mycielski sets for dynamical systems
-
E. Akin, Lectures on Cantor and Mycielski sets for dynamical systems, in: Contemp. Math. 356, Amer. Math. Soc., 2004, 21–79.
-
(2004)
Contemp. Math. 356, Amer. Math. Soc.
, pp. 21-79
-
-
Akin, E.1
-
2
-
-
0038534484
-
When is a transitive map chaotic?, in: Convergence in Ergodic Theory and Probability (Columbus, OH, 1993)
-
Publ. 5, de Gruyter, Berlin
-
E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in: Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ. 5, de Gruyter, Berlin, 1996, 25–40.
-
(1996)
Ohio State Univ. Math. Res. Inst
, pp. 25-40
-
-
Akin, E.1
Auslander, J.2
Berg, K.3
-
4
-
-
0242277094
-
Li–Yorke sensitivity
-
E. Akin and S. Kolyada, Li–Yorke sensitivity, Nonlinearity 16 (2003), 1421–1433.
-
(2003)
Nonlinearity
, vol.16
, pp. 1421-1433
-
-
Akin, E.1
Kolyada, S.2
-
5
-
-
0003236130
-
Minimal Flows and Their Extensions
-
North-Holland, Amsterdam
-
J. Auslander, Minimal Flows and Their Extensions, North-Holland Math. Stud. 153, North-Holland, Amsterdam, 1988.
-
(1988)
North-Holland Math. Stud
, vol.153
-
-
Auslander, J.1
-
7
-
-
0002754147
-
A disjointness theorem involving topological entropy
-
F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France 121 (1993), 465–478.
-
(1993)
Bull. Soc. Math. France
, vol.121
, pp. 465-478
-
-
Blanchard, F.1
-
8
-
-
2442665508
-
Constant-length substitutions and countable scrambled sets
-
F. Blanchard, F. Durand and A. Maass, Constant-length substitutions and countable scrambled sets, Nonlinearity 17 (2004), 817–833.
-
(2004)
Nonlinearity
, vol.17
, pp. 817-833
-
-
Blanchard, F.1
Durand, F.2
Maass, A.3
-
9
-
-
0036258654
-
On Li–Yorke pairs
-
F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li–Yorke pairs, J. Reine Angew. Math. 547 (2002), 51–68.
-
(2002)
J. Reine Angew. Math
, vol.547
, pp. 51-68
-
-
Blanchard, F.1
Glasner, E.2
Kolyada, S.3
Maass, A.4
-
11
-
-
0030214456
-
Dynamical behaviour of Coven’s cellular automata
-
F. Blanchard and A. Maass, Dynamical behaviour of Coven’s cellular automata, Theoret. Comput. Sci. 163 (1996), 291–302.
-
(1996)
Theoret. Comput. Sci
, vol.163
, pp. 291-302
-
-
Blanchard, F.1
Maass, A.2
-
12
-
-
84959849082
-
On scrambled sets and chaotic functions
-
A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions, Trans. Amer. Math. Soc. 301 (1987), 289–297.
-
(1987)
Trans. Amer. Math. Soc
, vol.301
, pp. 289-297
-
-
Bruckner, A.M.1
Hu, T.2
-
13
-
-
84968517915
-
On noncontinuous chaotic functions
-
J. Ceder, On noncontinuous chaotic functions, Proc. Amer. Math. Soc. 113 (1991), 551–555.
-
(1991)
Proc. Amer. Math. Soc
, vol.113
, pp. 551-555
-
-
Ceder, J.1
-
14
-
-
3442895273
-
From a Floyd–Auslander minimal system to an odd triangular map
-
J. Chudziak, L’. Snoha and V Špitalský, From a Floyd–Auslander minimal system to an odd triangular map, J. Math. Anal. Appl. 296 (2004), 393–402.
-
(2004)
J. Math. Anal. Appl
, vol.296
, pp. 393-402
-
-
Chudziak, J.1
Snoha, L’.2
Špitalský, V.3
-
15
-
-
84968517915
-
On noncontinuous chaotic functions
-
E. Coven, On noncontinuous chaotic functions, Proc. Amer. Math. Soc. 113 (1991), 551–555.
-
(1991)
Proc. Amer. Math. Soc
, vol.113
, pp. 551-555
-
-
Coven, E.1
-
17
-
-
84966207663
-
The Veech structure theorem
-
R. Ellis, The Veech structure theorem, Trans. Amer. Math. Soc. 186 (1973), 203–218.
-
(1973)
Trans. Amer. Math. Soc
, vol.186
, pp. 203-218
-
-
Ellis, R.1
-
19
-
-
33646727744
-
Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation
-
H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Math. Systems Theory 1 (1967), 1–55.
-
(1967)
Math. Systems Theory
, vol.1
, pp. 1-55
-
-
Furstenberg, H.1
-
21
-
-
13444310844
-
Li and Yorke chaos with respect to the cardinality of the scrambled sets
-
J.-L. García Guirao and M. Lampart, Li and Yorke chaos with respect to the cardinality of the scrambled sets, Chaos Solitons Fractals 24 (2005), 1203–1206.
-
(2005)
Chaos Solitons Fractals
, vol.24
, pp. 1203-1206
-
-
García Guirao, J.-L.1
Lampart, M.2
-
22
-
-
84973986800
-
There are no chaotic mappings with residual scrambled sets
-
T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc. 36 (1987), 411–416.
-
(1987)
Bull. Austral. Math. Soc
, vol.36
, pp. 411-416
-
-
Gedeon, T.1
-
23
-
-
0031479951
-
A simple characterization of the set μ-entropy pairs and applications
-
E. Glasner, A simple characterization of the set μ-entropy pairs and applications, Israel J. Math. 102 (1997), 13–27.
-
(1997)
Israel J. Math
, vol.102
, pp. 13-27
-
-
Glasner, E.1
-
24
-
-
0001138434
-
Sensitive dependence on initial conditions
-
E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067–1075.
-
(1993)
Nonlinearity
, vol.6
, pp. 1067-1075
-
-
Glasner, E.1
Weiss, B.2
-
25
-
-
0035644209
-
Homeomorphisms with the whole compacta being scrambled sets
-
W. Huang and X. D. Ye, Homeomorphisms with the whole compacta being scrambled sets, Ergodic Theory Dynam. Systems 21 (2001), 77–91.
-
(2001)
Ergodic Theory Dynam. Systems
, vol.21
, pp. 77-91
-
-
Huang, W.1
Ye, X.D.2
-
26
-
-
0005525599
-
Devaney’s chaos or 2-scattering implies Li–Yorke chaos
-
W. Huang and X. D. Ye, Devaney’s chaos or 2-scattering implies Li–Yorke chaos, Topology Appl. 117 (2002), 259–272.
-
(2002)
Topology Appl
, vol.117
, pp. 259-272
-
-
Huang, W.1
Ye, X.D.2
-
27
-
-
85016611610
-
Minimal sets in almost equicontinuous systems
-
W. Huang and X. D. Ye, Minimal sets in almost equicontinuous systems, Tr. Mat. Inst. Steklova 244 (2004), 297–304.
-
(2004)
Tr. Mat. Inst. Steklova
, vol.244
, pp. 297-304
-
-
Huang, W.1
Ye, X.D.2
-
28
-
-
57249086982
-
Independence and scrambled sets for chaotic mappings
-
World Sci., River Edge
-
A. Iwanik, Independence and scrambled sets for chaotic mappings, in: The Mathematical Heritage of C. F. Gauss, World Sci., River Edge, 1991, 372–378.
-
(1991)
The Mathematical Heritage of C. F. Gauss
, pp. 372-378
-
-
Iwanik, A.1
-
30
-
-
0038563696
-
A chaotic function possessing a scrambled set of positive Lebesgue measure
-
I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45–49.
-
(1984)
Proc. Amer. Math. Soc
, vol.92
, pp. 45-49
-
-
Kan, I.1
-
33
-
-
0042789144
-
Two-point scrambled set implies chaos
-
(Caldes de Malavella, 1987), World. Sci., Singapore
-
M. Kuchta and J. Smítal, Two-point scrambled set implies chaos, in: Proc. European Conf. on Iteration Theory ECIT 87 (Caldes de Malavella, 1987), World. Sci., Singapore, 1989, 427–430.
-
(1989)
Proc. European Conf. on Iteration Theory ECIT 87
, pp. 427-430
-
-
Kuchta, M.1
Smítal, J.2
-
36
-
-
0000100336
-
Period three implies chaos
-
T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985–992.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.-Y.1
Yorke, J.A.2
-
37
-
-
0040802135
-
Continuous maps with the whole space being a scrambled set
-
J. Mai, Continuous maps with the whole space being a scrambled set, Chinese Sci. Bull. 42 (1997), 1603–1606.
-
(1997)
Chinese Sci. Bull
, vol.42
, pp. 1603-1606
-
-
Mai, J.1
-
38
-
-
22444455487
-
Scrambled sets of continuous maps of 1-dimensional polyhedra
-
J. Mai, Scrambled sets of continuous maps of 1-dimensional polyhedra, Trans. Amer. Math. Soc. 351 (1999), 353–362.
-
(1999)
Trans. Amer. Math. Soc
, vol.351
, pp. 353-362
-
-
Mai, J.1
-
39
-
-
4344700167
-
Devaney’s chaos implies existence of s-scrambled sets
-
J. Mai, Devaney’s chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc. 132 (2004), 2761–2767.
-
(2004)
Proc. Amer. Math. Soc
, vol.132
, pp. 2761-2767
-
-
Mai, J.1
-
41
-
-
0001700538
-
Independent sets in topological algebras
-
J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147.
-
(1964)
Fund. Math
, vol.55
, pp. 139-147
-
-
Mycielski, J.1
-
44
-
-
84967791483
-
Chaotic functions with zero topological entropy
-
J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269–282.
-
(1986)
Trans. Amer. Math. Soc
, vol.297
, pp. 269-282
-
-
Smítal, J.1
-
45
-
-
33645777973
-
Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square
-
L’. Snoha and V. Špitalský, Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square, Discrete Contin. Dyn. Syst. 14 (2006), 821–835.
-
(2006)
Discrete Contin. Dyn. Syst
, vol.14
, pp. 821-835
-
-
Snoha, L’.1
Špitalský, V.2
-
46
-
-
0005597633
-
Multiple recurrence and doubly minimal systems
-
B. Weiss, Multiple recurrence and doubly minimal systems, in: Contemp. Math. 215, Amer. Math. Soc., 1998, 189–196.
-
(1998)
Contemp. Math. 215, Amer. Math. Soc.
, pp. 189-196
-
-
Weiss, B.1
-
47
-
-
0003094698
-
Toeplitz minimal flows which are not uniquely ergodic, Z
-
S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 57 (1984), 95–107.
-
(1984)
Wahrsch. Verw. Gebiete
, vol.57
, pp. 95-107
-
-
Williams, S.1
|