메뉴 건너뛰기




Volumn 110, Issue 2, 2008, Pages 293-361

Topological size of scrambled sets

Author keywords

Bernstein set; Cantor set; Extension; Factor; Graph map; Li Yorke chaos; Minimal system; Mixing; Mycielski set; Scrambled pair; Scrambled set; Synchronising subshift; Topological entropy; Triangular map

Indexed keywords


EID: 58149356458     PISSN: 00101354     EISSN: 17306302     Source Type: Journal    
DOI: 10.4064/cm110-2-3     Document Type: Article
Times cited : (68)

References (47)
  • 1
    • 34547170804 scopus 로고    scopus 로고
    • Lectures on Cantor and Mycielski sets for dynamical systems
    • E. Akin, Lectures on Cantor and Mycielski sets for dynamical systems, in: Contemp. Math. 356, Amer. Math. Soc., 2004, 21–79.
    • (2004) Contemp. Math. 356, Amer. Math. Soc. , pp. 21-79
    • Akin, E.1
  • 2
    • 0038534484 scopus 로고    scopus 로고
    • When is a transitive map chaotic?, in: Convergence in Ergodic Theory and Probability (Columbus, OH, 1993)
    • Publ. 5, de Gruyter, Berlin
    • E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in: Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ. 5, de Gruyter, Berlin, 1996, 25–40.
    • (1996) Ohio State Univ. Math. Res. Inst , pp. 25-40
    • Akin, E.1    Auslander, J.2    Berg, K.3
  • 4
    • 0242277094 scopus 로고    scopus 로고
    • Li–Yorke sensitivity
    • E. Akin and S. Kolyada, Li–Yorke sensitivity, Nonlinearity 16 (2003), 1421–1433.
    • (2003) Nonlinearity , vol.16 , pp. 1421-1433
    • Akin, E.1    Kolyada, S.2
  • 5
    • 0003236130 scopus 로고
    • Minimal Flows and Their Extensions
    • North-Holland, Amsterdam
    • J. Auslander, Minimal Flows and Their Extensions, North-Holland Math. Stud. 153, North-Holland, Amsterdam, 1988.
    • (1988) North-Holland Math. Stud , vol.153
    • Auslander, J.1
  • 7
    • 0002754147 scopus 로고
    • A disjointness theorem involving topological entropy
    • F. Blanchard, A disjointness theorem involving topological entropy, Bull. Soc. Math. France 121 (1993), 465–478.
    • (1993) Bull. Soc. Math. France , vol.121 , pp. 465-478
    • Blanchard, F.1
  • 8
    • 2442665508 scopus 로고    scopus 로고
    • Constant-length substitutions and countable scrambled sets
    • F. Blanchard, F. Durand and A. Maass, Constant-length substitutions and countable scrambled sets, Nonlinearity 17 (2004), 817–833.
    • (2004) Nonlinearity , vol.17 , pp. 817-833
    • Blanchard, F.1    Durand, F.2    Maass, A.3
  • 11
    • 0030214456 scopus 로고    scopus 로고
    • Dynamical behaviour of Coven’s cellular automata
    • F. Blanchard and A. Maass, Dynamical behaviour of Coven’s cellular automata, Theoret. Comput. Sci. 163 (1996), 291–302.
    • (1996) Theoret. Comput. Sci , vol.163 , pp. 291-302
    • Blanchard, F.1    Maass, A.2
  • 12
    • 84959849082 scopus 로고
    • On scrambled sets and chaotic functions
    • A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions, Trans. Amer. Math. Soc. 301 (1987), 289–297.
    • (1987) Trans. Amer. Math. Soc , vol.301 , pp. 289-297
    • Bruckner, A.M.1    Hu, T.2
  • 13
    • 84968517915 scopus 로고
    • On noncontinuous chaotic functions
    • J. Ceder, On noncontinuous chaotic functions, Proc. Amer. Math. Soc. 113 (1991), 551–555.
    • (1991) Proc. Amer. Math. Soc , vol.113 , pp. 551-555
    • Ceder, J.1
  • 14
    • 3442895273 scopus 로고    scopus 로고
    • From a Floyd–Auslander minimal system to an odd triangular map
    • J. Chudziak, L’. Snoha and V Špitalský, From a Floyd–Auslander minimal system to an odd triangular map, J. Math. Anal. Appl. 296 (2004), 393–402.
    • (2004) J. Math. Anal. Appl , vol.296 , pp. 393-402
    • Chudziak, J.1    Snoha, L’.2    Špitalský, V.3
  • 15
    • 84968517915 scopus 로고
    • On noncontinuous chaotic functions
    • E. Coven, On noncontinuous chaotic functions, Proc. Amer. Math. Soc. 113 (1991), 551–555.
    • (1991) Proc. Amer. Math. Soc , vol.113 , pp. 551-555
    • Coven, E.1
  • 17
    • 84966207663 scopus 로고
    • The Veech structure theorem
    • R. Ellis, The Veech structure theorem, Trans. Amer. Math. Soc. 186 (1973), 203–218.
    • (1973) Trans. Amer. Math. Soc , vol.186 , pp. 203-218
    • Ellis, R.1
  • 19
    • 33646727744 scopus 로고
    • Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation
    • H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation, Math. Systems Theory 1 (1967), 1–55.
    • (1967) Math. Systems Theory , vol.1 , pp. 1-55
    • Furstenberg, H.1
  • 21
    • 13444310844 scopus 로고    scopus 로고
    • Li and Yorke chaos with respect to the cardinality of the scrambled sets
    • J.-L. García Guirao and M. Lampart, Li and Yorke chaos with respect to the cardinality of the scrambled sets, Chaos Solitons Fractals 24 (2005), 1203–1206.
    • (2005) Chaos Solitons Fractals , vol.24 , pp. 1203-1206
    • García Guirao, J.-L.1    Lampart, M.2
  • 22
    • 84973986800 scopus 로고
    • There are no chaotic mappings with residual scrambled sets
    • T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc. 36 (1987), 411–416.
    • (1987) Bull. Austral. Math. Soc , vol.36 , pp. 411-416
    • Gedeon, T.1
  • 23
    • 0031479951 scopus 로고    scopus 로고
    • A simple characterization of the set μ-entropy pairs and applications
    • E. Glasner, A simple characterization of the set μ-entropy pairs and applications, Israel J. Math. 102 (1997), 13–27.
    • (1997) Israel J. Math , vol.102 , pp. 13-27
    • Glasner, E.1
  • 24
    • 0001138434 scopus 로고
    • Sensitive dependence on initial conditions
    • E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067–1075.
    • (1993) Nonlinearity , vol.6 , pp. 1067-1075
    • Glasner, E.1    Weiss, B.2
  • 25
    • 0035644209 scopus 로고    scopus 로고
    • Homeomorphisms with the whole compacta being scrambled sets
    • W. Huang and X. D. Ye, Homeomorphisms with the whole compacta being scrambled sets, Ergodic Theory Dynam. Systems 21 (2001), 77–91.
    • (2001) Ergodic Theory Dynam. Systems , vol.21 , pp. 77-91
    • Huang, W.1    Ye, X.D.2
  • 26
    • 0005525599 scopus 로고    scopus 로고
    • Devaney’s chaos or 2-scattering implies Li–Yorke chaos
    • W. Huang and X. D. Ye, Devaney’s chaos or 2-scattering implies Li–Yorke chaos, Topology Appl. 117 (2002), 259–272.
    • (2002) Topology Appl , vol.117 , pp. 259-272
    • Huang, W.1    Ye, X.D.2
  • 27
    • 85016611610 scopus 로고    scopus 로고
    • Minimal sets in almost equicontinuous systems
    • W. Huang and X. D. Ye, Minimal sets in almost equicontinuous systems, Tr. Mat. Inst. Steklova 244 (2004), 297–304.
    • (2004) Tr. Mat. Inst. Steklova , vol.244 , pp. 297-304
    • Huang, W.1    Ye, X.D.2
  • 28
    • 57249086982 scopus 로고
    • Independence and scrambled sets for chaotic mappings
    • World Sci., River Edge
    • A. Iwanik, Independence and scrambled sets for chaotic mappings, in: The Mathematical Heritage of C. F. Gauss, World Sci., River Edge, 1991, 372–378.
    • (1991) The Mathematical Heritage of C. F. Gauss , pp. 372-378
    • Iwanik, A.1
  • 30
    • 0038563696 scopus 로고
    • A chaotic function possessing a scrambled set of positive Lebesgue measure
    • I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45–49.
    • (1984) Proc. Amer. Math. Soc , vol.92 , pp. 45-49
    • Kan, I.1
  • 33
    • 0042789144 scopus 로고
    • Two-point scrambled set implies chaos
    • (Caldes de Malavella, 1987), World. Sci., Singapore
    • M. Kuchta and J. Smítal, Two-point scrambled set implies chaos, in: Proc. European Conf. on Iteration Theory ECIT 87 (Caldes de Malavella, 1987), World. Sci., Singapore, 1989, 427–430.
    • (1989) Proc. European Conf. on Iteration Theory ECIT 87 , pp. 427-430
    • Kuchta, M.1    Smítal, J.2
  • 36
    • 0000100336 scopus 로고
    • Period three implies chaos
    • T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985–992.
    • (1975) Amer. Math. Monthly , vol.82 , pp. 985-992
    • Li, T.-Y.1    Yorke, J.A.2
  • 37
    • 0040802135 scopus 로고    scopus 로고
    • Continuous maps with the whole space being a scrambled set
    • J. Mai, Continuous maps with the whole space being a scrambled set, Chinese Sci. Bull. 42 (1997), 1603–1606.
    • (1997) Chinese Sci. Bull , vol.42 , pp. 1603-1606
    • Mai, J.1
  • 38
    • 22444455487 scopus 로고    scopus 로고
    • Scrambled sets of continuous maps of 1-dimensional polyhedra
    • J. Mai, Scrambled sets of continuous maps of 1-dimensional polyhedra, Trans. Amer. Math. Soc. 351 (1999), 353–362.
    • (1999) Trans. Amer. Math. Soc , vol.351 , pp. 353-362
    • Mai, J.1
  • 39
    • 4344700167 scopus 로고    scopus 로고
    • Devaney’s chaos implies existence of s-scrambled sets
    • J. Mai, Devaney’s chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc. 132 (2004), 2761–2767.
    • (2004) Proc. Amer. Math. Soc , vol.132 , pp. 2761-2767
    • Mai, J.1
  • 41
    • 0001700538 scopus 로고
    • Independent sets in topological algebras
    • J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147.
    • (1964) Fund. Math , vol.55 , pp. 139-147
    • Mycielski, J.1
  • 44
    • 84967791483 scopus 로고
    • Chaotic functions with zero topological entropy
    • J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269–282.
    • (1986) Trans. Amer. Math. Soc , vol.297 , pp. 269-282
    • Smítal, J.1
  • 45
    • 33645777973 scopus 로고    scopus 로고
    • Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square
    • L’. Snoha and V. Špitalský, Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square, Discrete Contin. Dyn. Syst. 14 (2006), 821–835.
    • (2006) Discrete Contin. Dyn. Syst , vol.14 , pp. 821-835
    • Snoha, L’.1    Špitalský, V.2
  • 46
    • 0005597633 scopus 로고    scopus 로고
    • Multiple recurrence and doubly minimal systems
    • B. Weiss, Multiple recurrence and doubly minimal systems, in: Contemp. Math. 215, Amer. Math. Soc., 1998, 189–196.
    • (1998) Contemp. Math. 215, Amer. Math. Soc. , pp. 189-196
    • Weiss, B.1
  • 47
    • 0003094698 scopus 로고
    • Toeplitz minimal flows which are not uniquely ergodic, Z
    • S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 57 (1984), 95–107.
    • (1984) Wahrsch. Verw. Gebiete , vol.57 , pp. 95-107
    • Williams, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.