-
1
-
-
0141850258
-
Des vortex fractionnaires pour un modèle Ginzburg-Landau spineur
-
Alama S., and Bronsard L. Des vortex fractionnaires pour un modèle Ginzburg-Landau spineur. C. R. Acad. Sci. Paris Sér. I Math. 337 (2003) 243-247
-
(2003)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.337
, pp. 243-247
-
-
Alama, S.1
Bronsard, L.2
-
2
-
-
33744818922
-
Fractional degree vortices for a spinor Ginzburg-Landau model
-
Alama S., and Bronsard L. Fractional degree vortices for a spinor Ginzburg-Landau model. Commun. Contemp. Math. 8 3 (2006) 355-380
-
(2006)
Commun. Contemp. Math.
, vol.8
, Issue.3
, pp. 355-380
-
-
Alama, S.1
Bronsard, L.2
-
3
-
-
0042031700
-
Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity
-
Alama S., Bronsard L., and Giorgi T. Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity. J. Funct. Anal. 167 (1999) 399-424
-
(1999)
J. Funct. Anal.
, vol.167
, pp. 399-424
-
-
Alama, S.1
Bronsard, L.2
Giorgi, T.3
-
6
-
-
0003775635
-
-
Birkhäuser Boston, Boston, MA
-
Bethuel F., Brezis H., and Heléin F. Ginzburg-Landau Vortices (1994), Birkhäuser Boston, Boston, MA
-
(1994)
Ginzburg-Landau Vortices
-
-
Bethuel, F.1
Brezis, H.2
Heléin, F.3
-
7
-
-
46149141759
-
Remarks on sublinear elliptic equations
-
Brezis H., and Oswald L. Remarks on sublinear elliptic equations. Nonlinear Anal. 10 (1986) 55-64
-
(1986)
Nonlinear Anal.
, vol.10
, pp. 55-64
-
-
Brezis, H.1
Oswald, L.2
-
9
-
-
0036702194
-
Axisymmetric vortices in spinor Bose-Einstein condensates under rotation
-
Isoshima T., and Machida K. Axisymmetric vortices in spinor Bose-Einstein condensates under rotation. Phys. Rev. A 66 (2002) 023602
-
(2002)
Phys. Rev. A
, vol.66
, pp. 023602
-
-
Isoshima, T.1
Machida, K.2
-
10
-
-
0000260490
-
Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors
-
Knigavko A., and Rosenstein B. Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors. Phys. Rev. B 58 (1998) 9354-9364
-
(1998)
Phys. Rev. B
, vol.58
, pp. 9354-9364
-
-
Knigavko, A.1
Rosenstein, B.2
-
12
-
-
0001240515
-
Les minimiseurs locaux de l'énergie de Ginzburg-Landau sont à symétrie radiale
-
Mironescu P. Les minimiseurs locaux de l'énergie de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593-598
-
(1996)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.323
, pp. 593-598
-
-
Mironescu, P.1
|